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Abstract

This paper continues our study of applications of factorized Gr�obner basis compu-

tations in [8] and [9].

We describe a way to interweave factorized Gr�obner bases and the ideas in [5] that

leads to a signi�cant speed up in the computation of isolated primes for well splitting

examples.

Based on that observation we generalize the algorithm presented in [22] to the

computation of primary decompositions for modules. It rests on an ideal separation

argument.

We also discuss the practically important question how to extract aminimal primary

decomposition, neither addressed in [5] nor in [17]. For that purpose we outline a method

to detect necessary embedded primes in the output collection of our algorithm, similar

to [22, cor. 2.22].

The algorithms are partly implemented in version 2.2.1 of our REDUCE package

CALI [7].

1 Introduction

The computation of primary decompositions is a central goal and has attracted the atten-

tion of specialists in constructive commutative algebra for a long time. It was a popular

topic illustrating and bringing together very di�erent techniques and various approaches in

\pre computer" times, see e.g. [16].

A �rst thorough constructive approach to primary decomposition, collecting also the

ideas and observations on this topic known in the community before, is contained in the

fundamental work of A. Seidenberg in the 70's and 80's, see [18], [19], [20]. It heavily

in
uenced the �rst algorithmic attempts to compute primary decompositions using modern

methods as e.g. Gr�obner bases in [13]. These attempts culminated in the fundamental paper

[5] that collected known pieces together, �lled up the gaps and altogether presented the

�rst general primary decomposition algorithm, that could be (and was) implemented in a

computer algebra system.

Several papers, published almost at the same time, proposed similar ideas or improve-

ments to the original algorithm as e.g. [14] or [11]. There are also papers generalizing the

ideas of [5] to a more general context as e.g. [23], [1] or [10]. The primary decomposi-

tion algorithm of [5], originally formulated for ideals, may be extended also to (relative)
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submodules of a �nitely generated free module, as explained in [17]. The only completely

di�erent approach to primary decomposition, that may be applied to general examples,

was presented in [4].

Regardless of the wide attention that this theoretical work attracted in the community,

up to now there are only a few implementations of the algorithm: As far as we know, the

AXIOM implementation of the authors of [5], an implementation in MAS by H. Kredel for

zero dimensional ideals, our implementation in the REDUCE package CALI [7] and the

implementation in the computer algebra system Risa/Asir [15] by the authors of [22]. Only

CALI o�ers primary decomposition also for modules.

It was the aim of this paper to collect the experience obtained during our implementa-

tion of the above algorithm and to describe some new algorithmic ideas proved to be useful

especially for the computation of primary decompositions under the assumption that we

know already a list of isolated primes. During the preparation of this paper we became

aware of analogous considerations in [22], allowing several shortcuts compared to an earlier

version of this paper. Di�erent from [22], where the authors consider only primary decom-

position of ideals, results are explained here in general for pairs of submodules N � M of

a �nitely generated free module F .

After some preliminary work we �rst discuss, how factorization may be involved in an

early stage of the computation of isolated primes. It turns out empirically, that the same

advantage, observed for the factorized Gr�obner basis algorithm in contrast to the ordinary

one solving polynomial systems of equations in [8] and [9] for well splitting examples,

holds also for the computation of isolated primes. Of course, this re
ects the general

observation, that usually geometric properties of ideals (here: the computation of isolated

primes) are computationally more handy than algebraic ones (here: the computation of

primary decompositions).

To extract �nally the primary components we use as in [22] ideal separators with respect

to a list of isolated primes, computed in advance. We generalize this approach to a (relative)

module situation, too, i.e. separate the module N inside M into (almost) primary pieces.

In contrast to the original algorithm in [5] this and the extraction of the true primary pieces

needs no change to normal position.

In a third part we discuss the practically important question how to extract a minimal

primary decomposition, addressed neither in [5] nor in [17]. First [22] contains a method

to detect irrelevant primary components in a general primary decomposition. Their argu-

ment uses a careful examination of the interdependencies between di�erent branches of the

decomposition tree. We outline a \local" method, that allows to decide for a given prime

in a list of primes, containing all associated primes, whether it is associated or not.

We don't repeat here a comparison between the old and new methods at CPU time

level but refer the reader to [22] for such a comparison but conclude with some examples

to demonstrate the proposed new method \at work".

2 Preliminaries and Notations

2.1 Notations

Let k be a �eld, S = k[x1; : : : ; xn] the polynomial ring over k in the variables (x1; : : : ; xn)

and N �M two submodules of a �nitely generated free S-module F . For practical appli-
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cations M is usually the free S-module itself and N its submodule, but the theory and also

the algorithms developed below work in this more general situation as well. A special role

is played by ideals as submodules of S itself, for which the primary decomposition theorems

are surely better known than in the general situation.

We assume S to be equipped with a Noetherian term order as de�ned e.g. in [2, 5.3].

For F we �x a free basis e = (e1; : : : ; ek) and assume N and M to be given by sets of

generators in their representation wrt. e as vectors with polynomial entries. For practical

applications we collect these vectors into a matrix, such that the rows of that matrix

generate the corresponding submodule of F . In this setting we assume F to be equipped

with a compatible module term order as de�ned in [3, 15.2] (We do not restrict ourselves

to the special module term orders considered in [17]). Moreover we assume the reader

to be familiar with the ideas of Gr�obner bases for ideals and also for submodules of free

modules; see the same monographs. We will use the corresponding notions without further

explanation.

2.2 Primes and Primary Components

Lets repeat for convenience the de�nitions and existence statements on primary decompo-

sition of submodules as given e.g. in [21, ch. 9]: N is said to be a primary submodule of M

precisely when M=N 6= 0 and every zero divisor of M=N is already nilpotent. In this case

the ideal P := Rad(AnnS(M=N)), the radical of the annihilator of M=N in S, is a prime

ideal and we say that N is a P -primary subodule of M . If N1; : : : ; Nm are P -primary sub-

modules of M , then so is \mi=1Ni. Hence P -primary submodules can be collected together.

For an arbitrary submodule a primary decomposition of N inM is a representation ofN

as an intersection of �nitely many primary submodules ofM . Such a primary decomposition

N = N1 \N2 \ : : :\Nm

with Pi-primary modules Ni �M (i = 1; : : : ; m) is said to be minimal precisely when

(a) P1; : : : ; Pm are pairwise distinct, and

(b) for all j = 1; : : : ; m we have

Nj 6�
\

i6=j

Ni:

The �rst uniqueness theorem states that for such a minimal primary decomposition the

set of primes fP1; : : : ; Pmg is uniquely de�ned. These primes are called the associated

primes of M=N . We denote this set by Ass(M=N). Their union is exactly the set of zero

divisors of M=N . The support Supp(M=N) := fP 2 Spec S : (M=N)P 6= 0g consists of all
primes containing one of the associated primes. The dimension dim(M=N) is the maximal

possible length of an ascending chain of primes in Supp(M=N).

The prime ideals in Ass(M=N) that are minimal with respect to inclusion are called the

isolated primes of M=N , the remaining associated prime ideals are the embedded primes

of M=N . Geometrically, the isolated primes correspond to the di�erent components of

Supp(M=N) as a subset of the a�ne scheme Spec S. The embedded components are not
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visible from the geometric point of view but represent more delicate algebraic properties

and cause the most trouble in applications.

The second uniqueness theorem states that not only the primes but also the primary

components corresponding to isolated primes, the isolated components of N in M , are

uniquely de�ned. The other primary components, the embedded components of N in M ,

need not be de�ned uniquely.

In [5] the authors propose a recursive approach to �nd a (not necessarily minimal)

primary decomposition: In each step they compute some of the isolated components (of

highest dimension) and a certain \remainder" to be decomposed recursively. It is this re-

mainder that introduces non-uniqueness for the shape of embedded components and that

may produce components not necessary for a minimal primary decomposition. Compu-

tationally it is not advisable to use the above de�nition to detect them. Until CALI v.

2.2. we used a mutual inclusion test instead. Testing di�erent primary decomposition

packages Kazuhiro Yokoyama and Shimoyama Takeshi pointed out to me, that there must

be something wrong. Indeed, this shortcut is clearly incorrect. Below we present a test to

decide for a given prime P whether it is in Ass(M=N). Since embedded primes are de�ned

uniquely, this allows us to �lter out super
uous components in a primary decomposition.

2.3 Quotient Computations and Primary Decomposition

Let N � M be two S-modules as before. Below we use various quotient computations to

separate primary components of N in M . Here we collect the necessary technical prereq-

uisites.

Let J = (f1; : : : ; fk) � S be the ideal generated by f1; : : : ; fk 2 S. We write

N :M J := fm 2M : J �m � Ng and

N :M J1 := fm 2M : 9 k > 0 Jk �m � Ng

for the quotient resp. stable quotient of N by J (in M).

Lemma 1 Let N be a P -primary submodule of M and f 2 S. Then

1. N :M (f)1 = M if f 2 P .

2. N :M (f)1 = N if f 62 P .

More generally, for an arbitrary submodule N � M and its primary decomposition N =

\Ni into Pi-primary modules Ni we get

N :M (f)1 =
\

fNi : f 62 Pig

and for the ideal J � S

N :M J1 =
\
fNi : J 6� Pig

Proof : The �rst assertion follows immediately from the fact, that the multiplication

map by f on M=N is either nilpotent (for f 2 P ) or injective (for f 62 P ).

The other statements are easy consequences of the �rst one and general quotient prop-

erties. 2
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Lemma 2 For S-modules N �M the inclusions

Ass(N) � Ass(M) � Ass(N) [Ass(M=N)

hold. In particular, for a polynomial s 2 S we get Ass(M=(N :M (s))) � Ass(M=N), i.e.

if N is P -primary in M , then either N :M (s) = M or N :M (s) is P -primary in M , too.

Proof : For the �rst statement see e.g. [21, ex. 9.42]. The latter statement follows from

the exact sequence

0 �!M=(N :M (s)) �!M=N;

induced by the multiplication by s. 2

2.4 Factorized Gr�obner Bases

In addition to the notation introduced so far let �k be the algebraic closure of k and B :=

ff1; : : : ; fmg � S a set of polynomials.

Z(B) := fa 2 �kn : f(a) = 0 for all f 2 B g

denotes the set of zeroes of B over �k.

The Gr�obner algorithm with factorization is a powerful tool to decompose the zero set

of a well splitting polynomial system into smaller components. It invokes factorization of

reduced S-polynomials during the calculation of Gr�obner bases and splits the computation

into as many branches as (di�erent) factors occur. Since the algorithm is part of almost

all general purpose Computer Algebra Systems, we will not describe it here and refer the

reader to [8] and [9] instead, where we discussed this algorithm in great detail and employed

it successfully to decompose a given set of polynomials into triangular systems.

For our considerations below let's �x only its input/output speci�cation:

The Algorithm FGB(B) :

Input : A set of polynomials B � S.

Output: A list of Gr�obner bases fBi : i = 1; : : : ; mg with Z(B) = [Z(Bi).

It turned out that in practical examples often, especially with respect to the lexico-

graphic term order, the list of bases produced by the Gr�obner factorizer consists already

of primes and hence presents a decomposition of (B) into isolated primes. Of course, this

cannot be guaranteed. Below we use it in a �rst step and complete the computation in a

second step along the lines of [5].

2.5 Reduction to dimension zero

A general tool, used in several places of our algorithm, is the base change trick proposed

in [5]: Consider some of the variables as parameters to reduce the general problem to a

zerodimensional one. A systematic study of consequences that can be derived this way is

contained in [12]. Here we generalize these ideas to submodules of a �nitely generated free

S-module F , extending the results of [17] into a more computational direction.
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Recall �rst the notion of independent sets: For a given ideal I � S the set of variables

(xv; v 2 V ) is an independent set i� I \ k[xv ; v 2 V ] = (0). See [2] for the de�nition

and also a guideline to the history of this notion. [6] contains another explanation of this

notion, its connection to strongly independent sets, and discusses algorithms for an e�ective

computation of strongly independent sets.

[6] generalizes this notion also to submodules of F . Here we need a further generalization

to a relative situation. Let N � M be as above. We say that (xv ; v 2 V ) is a relative

independent set for N �M i� it is an independent set for I = AnnS(M=N).

Let (xv; v 2 V ) be a maximal (wrt. inclusion) relative independent set for N � M .

Denote by ~S := k(xv; v 2 V )[xv; v 62 V ] the extension ring of S that we obtain localizing at

� := k[xv; v 2 V ]nf0g, and by ~F ; ~M; ~N , and ~I the extension modules and the extension ideal

obtained from F;M;N , and I by the 
at base change S �! ~S. Since localization commutes

with taking annihilators we get ~I = Ann ~S
( ~M= ~N) and thus dim ~M= ~N = dim ~S=~I = 0.

Since S is an integral domain, there are natural embeddings S � ~S and F � ~F and we

can de�ne retractions ~I \ S, ~M \ F , ~N \M etc.

Lemma 3 Let N be an P -primary submodule of M � F . Then one of the following two

alternatives holds:

1. If P \ � = ; then ~N is a ~P -primary submodule of ~M and ~N \M = N .

2. If P \ � 6= ; then ~N \M = M .

Proof : Since primarity commutes with localization we have only to prove the

assertions about the recontractions.

For the �rst part assume n
s
= m 2 ~N \M with n 2 N; s 2 �;m 2M . Hence n = m � s

and m 2 N :M (s) = N since s 62 P is a non zero divisor on M=N .

For the second part take s 2 �\P . Since s is nilpotent on M=N there is a power e� 0

such that seM � N and every m 2M may be represented as n
se

for an appropriate n 2 N .

2

For arbitrary submodules N of F there is a close connection between N and ~N . With

respect to a special module term order on F , one can even read o� a Gr�obner basis of ~N

from a Gr�obner basis of N . For this purpose we de�ne an inverse module term block order

wrt. V on F in the following way: Let <1 be an inverse block order wrt. V on S as de�ned

in [2, p. 390]. Then module terms mei and n ej are compared by the rule

mei < n ej :, m <1 n or

m = n and i < j

(i.e. in the sense of [17] < is the TOP module term order on F induced by <1). Wrt. such

a module term order the extension of a Gr�obner basis B of N to ~F is a Gr�obner basis of ~N

and a minimal Gr�obner basis of ~N can be obtained picking up the elements with leading

terms, that are minimal with respect to the (module) division order on ~F . This generalizes

well known properties of ideals, see [5] or [2].

For retractions the situation is slightly more di�cult. If P � S is prime then either
~P \ S = P (if P \ � = ;) or ~P \ S = S (otherwise). In general retractions can be found

by a stable quotient computation from a Gr�obner basis over ~S. For this purpose de�ne a
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denominator-free basis B of the module J � ~F as a set of polynomial vectors in F such

that they generate J regarded as elements of ~F . Such a basis can be constructed from an

arbitrary basis of J clearing denominators. Denote by (B) the module generated by B in

F .

Lemma 4 Let B be a denominator-free Gr�obner basis of J � ~F and c 2 S the product of

the leading coe�cients of the elements of B regarded as polynomial vectors in ~F . Then

J \ F = (B) :F (c)1:

Proof : As explained e.g. in [9] one can compute denominator-free in ~F using the well

known pseudo normal form algorithm PNF(p,B). For p 2 F it returns a denominator-free

pseudo ~S-normal form p0 2 F � ~F with respect to B, i.e. satisfying z � p � p0 (mod J)

for a certain unit z 2 ~S that can be chosen to be a product of leading coe�cients of the

elements in B.

Since c is invertible in ~S we have only to show, that J \ F � (B) :F (c)1. But since

B is a Gr�obner basis of J over ~S, for a (denominator-free) element p 2 J \ F we get

PNF (p; B) = 0 and hence p 2 (B) :F (c)1. 2

For ideals this is a slight modi�cation of [5, 3.8.] or [22, A.8], where c is the product of

all leading coe�cients in a Gr�obner basis over S instead of ~S, and was �rst proved in this

form in [12, 1.3]. See also [2, 8.94] or [9].

3 Isolated Primes

For the computation of isolated primes we follow the original ideas explained in [5] with

modi�cations proposed in [11], see also [2, ch. 8.7] for details. Since these sources are easy

accessible, below we restrict ourselves to outline modi�cations (and non-modi�cations)

caused by FGB.

Let I � S be an ideal (e.g. I = AnnS(M=N) from above). To compute its isolated

primes in [5] the authors propose the following rough scheme:

1. Find a maximal independent set (xv : v 2 V ) of I , e.g. from a Gr�obner basis of I .

2. (Re)compute a Gr�obner basis B of I with respect to an inverse block order wrt. V .

3. Change to ~S, extract the minimal denominator-free Gr�obner basis B0 � B and the

product of their leading coe�cients c 2 S.

4. Compute the zero dimensional isolated primes of ~I and their retractions to S. This

yields a list of primes P1; : : : ; Pm such that

Z(I) =
m[

i=1

Z(Pi)
[

Z(I + (c))

5. Compute the isolated primes of the (in most cases lower dimensional) ideal I + (c)

recursively and pick only those not containing one of the Pi's.
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By our experience, for practical applications it is better not to change to dimension zero

in one step, but to \slice the problem" descending the dimension in each step by one as in

(the �nal version of) [5]. Since such a variant rests on exactly the same ideas as above, we

do not enter into details here.

How may FGB be invoked ? In the �rst step one can compute factorized Gr�obner bases

to split the problem in advance into possibly more handy pieces. This is at the same time

the most important invocation of FGB, since afterwards pieces tend to be almost prime,

thus seldom allowing a deeper splitting. In the second step (Gr�obner basis recomputation

with respect to an inverse block order) FGB cannot be applied, since for the result V must

remain independent. This is not guaranteed for ideals strongly containing I . In step 4,

by lemma 4 the retract may be computed as a stable quotient. Done as described in [2,

6.38] FGB might be invoked during the elimination step, but this is of limited use since

the result is known to be prime in this case.

It remains to discuss the zero dimensional part of the above algorithm. So assume

I � S is a zero dimensional ideal. Following the rules of [5] or [2, ch. 8.6] we would proceed

as follows:

1. Compute, e.g. by Buchberger's approach (cf. [2, 9.6]), the monic generators of I\k[xi]
for i = 1; : : : ; n. Adding their square-free parts to the set of generators of I we get a

basis for the radical
p
I .

2. Make a generic (or moderate, as suggested in [11]) change of coordinates to putp
I into normal position with respect to x1 ([2, 8.67]) and decompose the monic

generator of
p
I\k[x1] into (pairwise non-associated) factors p1; : : : ; pm. Then f

p
I+

(p1); : : : ;
p
I + (pm)g are the isolated primes of I .

Again, the �rst step strongly suggests that factorization should be invoked. A modi�-

cation of FGB for the monic generators mentioned above thus will do some of the work of

step 2 in advance and split the ideal already before changing coordinates. For many practi-

cal applications this reduces the computational amount in the second step to its necessary

minimum.

Note that, due to a reduction argument for the embedding dimension, we may moreover

restrict ourselves in the �rst step to those variables not contained among the generators of

the initial ideal of I . This is especially useful for pure lexicographic term orders, since on the

one hand factorized Gr�obner bases of zero dimensional ideals tend to be in Shape Lemma

form (cf. [2, 8.77] and our observations in [8]) and on the other hand monic generators for

such variables are usually hard to compute.

4 Primary Decomposition

Starting from a set of isolated primes one can use ideal separation to compute the corre-

sponding primary decomposition. Let's illustrate this approach at �rst for modules without

embedded primes.

Proposition 1 Let N � M be as above and assume that Ass(M=N) = fP1; : : : ; Pmg
contains no embedded primes. For i; j = 1; : : : ; m take fi 2 S such that fi 2 Pj if i 6= j,
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but fi 62 Pi. Then

N =
\

(N :M (fi)
1)

is a (minimal) primary decomposition of N in M .

This is an immediate consequence of lemma 1.

Note that the construction of fi is easy: Lacking embedded primes we �nd for each

j 6= i a (base) polynomial pij in Pj not contained in Pi. Then fi :=
Q
j 6=i pij has the desired

property. We say that fi separates fPj : j 6= ig from Pi.

Since zero dimensional ideals are unmixed, this applies especially to the situation, when

dim M=N = 0 and allows the computation of a primary decomposition for modules of

(relative) dimension zero without a coordinate change to normal position (at least in that

phase of the computation).

In general we can do the same construction for the isolated primes of M=N , but neither

N :M (fi)
1 must be primary nor the above equality must hold. Thm. 2.7 in [22] contains

the necessary improvements for ideals, that generalize to modules in the following way:

Proposition 2 Let N � M be two S-modules and assume that L := fP1; : : : ; Pkg are the

isolated primes of M=N . Take as in the previous proposition fi 2 S separating L n fPig
from Pi, Ni := N :M (fi)

1 and integers ei such that f eii Ni � N .

Then

1. Ni is a quasi Pi-primary module in M , i.e. has a unique isolated prime Pi (and

possibly embedded components).

2. The sets Ai := Ass(M=Ni) = fP 2 Ass(M=N) : fi 62 Pg are pairwise disjoint.

3. For J := (f e1
1
; : : : ; f

ek
k ) we have

N = (\Ni)
\
(N + J �M):

This is a decomposition of N into quasi primary components Ni and a component

N 0 := N + J �M �M of lower (relative) dimension.

Proof : By de�nition, fi vanishes on all associated primes of M=N not embedded in or

equal to Pi (and may vanish on some of the remaining primes di�erent from Pi). Since by

lemma 1 a stable quotient with respect to fi cuts o� all such components, this veri�es the

�rst assertion.

By construction P 2 Ass(M=N) may not contain at most one of the separators. This

veri�es also the second assertion.

Since N � N 0 � M and (M=N 0)P = 0 for all P 2 L we conclude also immediately

dim(M=N 0) < dim(M=N).

The remaining assertion follows as in [22]: First notice, that Ni :M (f
ej
j ) = M for each

j 6= i. Indeed, since

Ni :M (f
ej
j ) � N :M (f

ej
j ) = Nj and Ni :M (f

ej
j ) � Ni

we conclude by lemma 2 Ass(M=(Ni :M (f
ej
j ))) � Ai \Aj = ;.
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Now, if n +
P
f
ej
j mj 2 \Ni with n 2 N;mj 2 M , we conclude f

ej
j mj 2 Ni for j 6= i

and thus also f eii mi 2 Ni = N :M (f eii ). Hence f
2ei
i mi 2 N;mi 2 N :M (fi)

1 = N :M (f eii )

and �nally f eii mi 2 N . 2

It remains to decompose the quasi primary components Ni. Here we apply reduction

to dimension zero once more. So lets assume that M=N has a unique isolated prime P .

Choose a maximal relative independent set (xv; v 2 V ) for N � M and let ~N; ~M etc. be

as in section 2.5 the extension modules of N;M etc. to ~S := k(xv; v 2 V )[xv; v 62 V ].

Lemma 5 Assume moreover that B is a Gr�obner basis of N wrt. an inverse module term

block order wrt. V on F , B0 � B a denominator-free Gr�obner basis for ~N and c 2 S the

product of the leading coe�cients of the elements of B0 regarded as polynomial vectors in
~F . Then

N 0 := ~N \M = N :M (c)1

is the (uniquely determined) P -primary component of N in M .

If e is an integer such that ce �N 0 � N , then

N = N 0
\
(N + ceM)

is a decomposition of N into a P -primary component and another module of lower (relative)

dimension.

Proof : The �rst assertion follows immediately from the fact that dim ~M= ~N = 0

and that P is the unique isolated prime of M=N . The second one may be proved as in the

last proposition. 2

Lets collect our considerations into the following primary decomposition algorithm:

The Algorithm PrimeDecomposeA(N,M)

Input : N �M � F

Output : A primary decomposition of N in M .

1. Compute L := fP1; : : : ; Pkg, the list of isolated primes of M=N as in

section 3.

2. For i = 1; : : : ; k compute polynomials fi 2 S separating L n fPig from Pi.

3. For i = 1; : : : ; k compute the quasi primary components Ni := N :M (fi)
1

as stable quotients and integers ei such that f eii Ni � N .

4. Return

([iPrimeDecomposeB(Ni;M; Pi))
S

PrimeDecomposeA(N 0 := N + (f e1
1
; : : : ; f ekk )M;M)

The Algorithm PrimeDecomposeB(N,M,P)

Input : N � M � F , such that M=N has a unique isolated

prime P .

Output : A primary decomposition of N in M .
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1. Find a maximal relative independent set (xv; v 2 V ) for N �M .

2. Compute a Gr�obner basis B of N wrt. an inverse module term block order

wrt. V .

3. Change to ~S, extract a minimal Gr�obner basis B0 � B of ~N and compute

c 2 S, the product of the leading coe�cients of the elements of B0 regarded

as polynomial vectors in ~F .

4. Compute N 0 := N :M (c)1 and an integer e such that ceN 0 � N .

5. Return

f(N 0;M; P )g
[
PrimeDecomposeA(N + ce �M;M)

To obtain a primary decomposition with pairwise di�erent primes we may collect all compo-

nents in the output collection of PrimeDecomposeA with the same prime P and substitute

them by their intersection. Note that even such a decomposition may not be minimal.

5 Minimal Primary Decomposition

To extract a minimal primary decomposition from an arbitrary one we employ the following

necessity check. Assume N = \Ni is a primary decomposition of N in M into Pi-primary

components Ni (we may assume the Pi to be pairwise distinct), but L = fP1; : : : ; Pmg
eventually contains super
uous primes. Fix Pi 2 L and Ni as the corresponding primary

component.

As above we �nd f 2 S that separates fPj 6� Pig from Pi. Hence by lemma 1 the

associated primes of the module

Mi := N :M (f)1 =
\

fPj�Pig

Nj

are contained in Pi. Again by lemma 1 we conclude that another stable quotient by Pi cuts

o� exactly Ni. Hence we can decide whether Ni is redundant in the decomposition of N

testing Mi and Mi :M P1
i for equality. Altogether we proved the following

Proposition 3 Let f(Ni;M; Pi) : i = 1; : : : ; mg be as above a collection of Pi-primary

modules Ni � M , such that N = \Ni is an eventually redundant primary decomposition

of N in M with pairwise di�erent primes Pi.

Let f 2 S separate fPj 6� Pig from Pi and compute Mi := N :M (f)1.

Then Pi 62 Ass(M=N) i� Mi = Mi :M P1
i .

This proposition is in the spirit of [22, cor. 2.22]. It gives the possibility \locally" to

check primes whether they belong to Ass(M=N), i.e. not referring to the corresponding

primary components themselves. Hence one can do this check on the list of primes produced

by PrimeDecomposeA(N;M) before primary components corresponding to the same prime

are collected together.

[4, thm. 1.1] proposes another way to �nd the associated primes ofM=N : A prime P �
S of codimension e is associated to M=N i� P is an isolated prime of Ann ExteS(M=N; S).

11



6 Some Examples

We conclude with some easy examples to demonstrate the algorithms \at work". The

following computations were done with an experimental implementation of the above al-

gorithms based on our REDUCE package CALI [7] on an IBM RS/6000. The exam-

ples are taken from [16] and were computed wrt. the pure lexicographic term order with

x0 > x1 > : : :.

Ex. 1 ([16, 8.1.1]) : This is a monomial ideal in S = k[x0; x1; x2; x3] with two isolated

and one embedded component:

I = (x2
0
x1 ; x0 x

2

2
; x2

1
x2 ; x

3

2
)

The isolated primes, computed by FGB, are P1 = (x0 ; x2) and P2 = (x1 ; x2). As ideal

separators we can take f1 = x1 and f2 = x0. This yields

I1 = I : (x1)
1 = (x2

0
; x2) with f2

1
I1 � I ,

I2 = I : (x0)
1 = (x1 ; x

2

2
) with f2

2
I2 � I

and �nally

I = I1 \ I2 \ (I + (x2
0
; x2

1
)):

Here

I3 := I + (x2
0
; x2

1
) = (x0 x

2

2
; x3

2
; x2

0
; x2

1
)

is already P3-primary with P3 = (x0 ; x1 ; x2).

To decide whether I3 is necessary for a minimal primary decomposition we compute

I : P1
3

= (x1 x2 ; x
2

2
; x2

0
x1). Since I : P

1
3
6= I we conclude that P3 2 Ass S=I .

Ex. 2 ([16, 8.1.3]) : This is a monomial ideal in S = k[x0; x1; x2] with one isolated and

one embedded component:

I = (x1) � (x0 ; x1 ; x2) = (x2
1
; x1 x2 ; x0 x1):

The only isolated prime is P1 = (x1). Taking (x0 ; x2) as maximal independent set and
~S = k(x0; x2)[x1] we obtain I1 = ~I \ S = I : (x0 x2)

1 = (x1) and

I = I1 \ (I + (x0 x
2

2
))

J := I + (x0 x
2

2
) = (x2

1
; x1 x2 ; x0 x1 ; x0 x

2

2
) decomposes as the ideal in ex. 1 into

J = (x1 ; x
2

2
) \ (x0 ; x1)\ (J + (x0 ; x

2

2
));

where J + (x0 ; x
2

2
) = (x2

1
; x1 x2 ; x0 ; x

2

2
) is (x0; x1; x2)-primary. Altogether we obtain

the (not minimal) primary decomposition

I = (x1)\ (x1 ; x
2

2
) \ (x0 ; x1) \ (x2

1
; x1 x2 ; x0 ; x

2

2
):

To extract from the decomposition computed so far a minimal primary decomposition, we

have to apply our necessity check to the primes in L = f(x1 ; x2); (x0 ; x1); (x0 ; x1 ; x2)g.

12



For P2 = (x1 ; x2) we �rst separate it from f(x0 ; x1); (x0 ; x1 ; x2)g by f = x0. We

obtain I 0 = I : (x0)
1 = (x1), that has evidently no P2-primary component. Hence the P2-

component in the decomposition of I may be skipped. The same applies to P3 = (x0 ; x1).

For P4 = (x0 ; x1 ; x2) there is nothing to separate. Since I : P1
4

= (x1) 6= I we

conclude that this component cannot be skipped.

Altogether we obtain the minimal primary decomposition

I = (x1) \ (x2
1
; x1 x2 ; x0 ; x

2

2
):

Ex. 3 ([16, 8.5.2]) This is a presentation of Macaulay's curve as a set theoretic inter-

section of three surfaces

I = (x0 x3 � x1 x2 ; x
2

0
x2 � x3

1
; x1 x

2

3
� x3

2
)

FGB produces the only isolated prime P1 = I + (f) with f := x0 x
2

2
� x2

1
x3. Since our

term order is already an inverse block order for the maximal independent set (x2 ; x3), we

extract from the Gr�obner basis

B = fx0 x1 x22 � x3
1
x3 ; x0 x

3

2
� x2

1
x2 x3 ;

x0 x3 � x1 x2 ; x
2

0
x2 � x3

1
; x1 x

2

3
� x3

2
g

of I � S the minimal Gr�obner basis B0 = fx0 x3 � x1 x2 ; x1 x
2

3
� x3

2
g of ~I and c = x3 2 S

as the (squarefree) product of the leading coe�cients of B0 regarded as polynomials in ~S.

Since I : (c)1 = P1 and c f 2 I we conclude

I = P1 \ (I + (c));

where J := I + (c) = (x3
2
; x1 x2 ; x3 ; x

2

0
x2 � x3

1
) is P2-quasi primary with P2 :=

(x3 ; x2 ; x1).

For J only (x0) may serve as maximal independent set, so we have to compute a Gr�obner

basis of J wrt. an appropriate inverse block order, where x0 is the lowest variable. As in

the computation for I we obtain

B = fx2
0
x2
2
; x3

2
; x1 x2 ; x3 ; � x2

0
x2 + x3

1
g;

B0 = fx2
0
x2
2
; x1 x2 ; x3 ; � x2

0
x2 + x3

1
g;

c = x0;

I2 := J : (c)1 = (x2
2
; x1 x2 ; x3 ; � x2

0
x2 + x3

1
)

as the P2-primary component and

J = I2 \ (J + (x2
0
)):

Here K := J +(x2
0
) = (x2

0
; x3

2
; x1 x2 ; x3 ; x

3

1
) is P3-primary with P3 = (x0 ; x1 ; x2 ; x3).

Altogether we obtain the decomposition I = P1\I2\K, where again I2 may be skipped.

Indeed, separating fP3g from P2 by a stable quotient by x0 we get

I 0 = I : (x0)
1 = (� x0 x

2

2
+ x2

1
x3 ; � x0 x

3

3
+ x4

2
; � x0 x3 + x1 x2 ;

� x2
0
x2 + x3

1
; x1 x

2

3
� x3

2
)

and I 0 : P1
2

= I 0.
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