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Abstract

We report on some experiences with the general purpose Computer Algebra Systems

(CAS) Axiom, Macsyma, Maple, Mathematica, MuPAD, and Reduce solving systems of

polynomial equations and the way they present their solutions. This snapshot (taken

in the spring 1996) of the current power of the di�erent systems in a special area

concentrates both on CPU-times and the quality of the output.

1 Introduction

Let S := k[x1; : : : ; xn] be the polynomial ring in the variables x1; : : : ; xn over the �eld

k and B := ff1; : : : ; fmg � S be a �nite system of polynomials. Denote by I(B) the

ideal generated by these polynomials. One of the major tasks of constructive commutative

algebra is the derivation of information about the structure of Z(B) := fa 2 �kn : 8 f 2
B such that f(a) = 0g, the set of common zeroes of the system B over the algebraic closure
�k of k.

Splitting the system into smaller ones, solving them separately, and patching all solu-

tions together is often a good guess for a quick solution of even highly nontrivial problems.

This can be done by several techniques, e.g. characteristic sets, resultants, the Gr�obner fac-

torizer or some ad hoc methods. Of course, such a strategy makes sense only for problems

that really will split, i.e. for reducible varieties of solutions. Surprisingly, problems coming

from \real life" often ful�ll this condition.

Among the methods to split polynomial systems into smaller pieces probably the

Gr�obner factorizer method attracted the most theoretical attention, see Czapor ([4, 5]),

Davenport ([6]), Melenk, M�oller and Neun ([17, 18]) and Gr�abe ([13, 14]). General pur-

pose Computer Algebra Systems (CAS) are well suited for such an approach, since they

make available both a (more or less) well tuned implementation of the classical Gr�obner

algorithm on the one side and an e�ective multivariate polynomial factorizer on the other

side.

�Partially supported by the DFG grant Gr 1230/1-2.
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Of course, for special purposes a general CAS as a multipurpose mathematical assis-

tant can't o�er the same power as specialized software with e�ciently implemented and

well adapted algorithms and data types. For polynomial system solving such specialized

software has to implement two algorithmically complex tasks, solving and splitting, and

until recently none of the specialized systems (as e.g. GB, Macaulay, Singular, CoCoA etc.)

did both e�ciently. Meanwhile being very e�cient computing (classical) Gr�obner bases,

development e�orts are also directed, not only for performance reasons, towards a better

inclusion of factorization into such specialized systems. It turned out that the Gr�obner

factorizer is not only a good heuristic approach for splitting, but its output is also usually

a collection of almost prime components. Their description allows a much deeper under-

standing of the structure of the set of zeroes compared to the result of a sole Gr�obner basis

computation.

On the other hand it needs some skill to force a special system to answer questions

and the user will probably �rst try its \home system" for an answer. Thus the polynomial

systems solving facility of the di�erent CAS should behave especially well on such systems

of polynomials that are hard enough not to be done by hand, but not really hard to require

special e�orts. It should invoke a convenient interface to get the solutions in a form that is

(correct and) well suited for further analysis in the familiar environment of the given CAS

as the personal mathematical assistant.

Below we give a short review of theoretical results about the way a set of zeroes of a

polynomial system should be presented, discuss by means of examples the Solve facility

of Axiom (2.0), Macsyma (420), Maple (V.3), Mathematica (2.2), MuPAD (1.2.9), and

Reduce (3.6), and investigate how far the di�erent implementations meet the theoretical

demands. The examples chosen for this review came from di�erent applications and many

of them were already used as benchmarks in other places.

Note that choosing such a sample has a twofold risk. First, typical polynomial systems

from other application areas may have a di�erent special structure taken into account by

the di�erent solvers' heuristics or not. This especially applies to parametric polynomial

systems. Since there is not yet developed a concise theory of e�ective algorithms to solve

(generically) polynomial systems with many parameters in the coe�cient domain they

remained (except ex. 10) outside the scope of this paper regardless the fact that such

systems occur quite often in applications from robotics, electrical engineering, chemistry or

geometry theorem proving. The same applies to polynomial systems with more advanced

coe�cient domains as, e.g., �nite �elds or algebraic extensions of the rationals.

Second, discussing the preparation of a review like this with the system's developers

usually stimulates their activities to improve their systems in the direction under review.

This especially concerned the systems Macsyma and MuPAD. This makes it hard for the

reviewer to draw fair conclusions, especially if there are additionally time lags between the

main experiments (spring 1996), the �rst presentation (at IMACS 96), a preprint version

(end of 1996) and this publication. To resolve this problem the main text of our paper

presents a snapshot of the state of the art implemented in the current versions of the

di�erent systems during our experiments in the spring 1996. A separate chapter \What's

going on ?" reports the main improvements we became aware during the further preparation

of this paper.
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System
Version used in

the main part

Version and

packages tested

for the addendum

Axiom 2.0 |

Macsyma 420 algsys, triangsys

Maple V.3 V.4, charsets

Mathematica 2.2 3.0

MuPAD 1.2.9. 1.4.0

Reduce 3.6. |

Versions and packages of the di�erent CAS tested in this review.

The main computations were executed on an HP 9000/735 except those with Axiom,

which were executed on an IBM RS/6000.

2 Solving polynomial systems { A short overview

Let's �rst collect together some theoretical results and give a survey about the way solutions

of polynomial systems may be represented. We only sketch the results below and refer the

reader for more details to the papers [13, 14].

Solving systems of polynomial equations in an ultimate way means to �nd a decompo-

sition of the variety of solutions into irreducible components, i.e. a representation of the

radical Rad I(B) of the de�ning ideal as an intersection of prime ideals, and to present

them in a way that is well suited for further computations. Usually one tries �rst to solve

this problem over the ground �eld k, since the corresponding transformations may be per-

formed without introducing new algebraic quantities. Only in a second step �k (or another

extension of k) is involved. Since for general univariate polynomials of higher degree there

are no closed formulae for their zeroes using radicals and moreover even for equations of

degree 3 and 4 the closed form causes great di�culties during subsequent simpli�cations,

nowadays in most of the CAS the second step is by default not executed (in exact mode),

but encapsulated in the functional symbol RootOf (p(x); x) 1, representing the sequence, set,

list etc. of solutions of the equation p(x) = 0 for a certain (in most cases not necessarily

irreducible) polynomial p(x). Hence we will not address the second step in the rest of this

paper, too.

Attempting to �nd a full prime decomposition leads to quite di�cult computations

(the approach described in [9], and re�ned meanwhile in a series of papers, needs several

Gr�obner basis computations over di�erent transcendental extensions of the ground �eld),

involving generic coordinate changes in the general case. The latter occurs e.g., if one tries

to separate the solution set of fx2 � 2; y2 � 2g over Q into the components fx2 � 2; y � xg
and fx2 � 2; y + xg.

Since the system fx2 � 2; y2 � 2g is already in a form convenient for computational

purposes, one may wish not to ask for a completely splitted but a triangular solution set.

It turns out that every zero dimensional system of polynomials may be decomposed over k

into such pieces even without factorization.

1We use this symbol to represent roots of univariate polynomials symbolically in a concise way, that is

present in similar versions, but under di�erent names in almost all of the CAS under consideration.
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2.1 Solving zero dimensional polynomial systems

The notion of triangular systems was introduced for zero dimensional ideals by Lazard in

[15] and meanwhile became widely accepted, see the monograph [19].

A set of polynomials ff1(x1); f2(x1; x2); : : : ; fn(x1; : : : ; xn)g is a (zero dimensional)

triangular system (reduced triangular set in [15]) if, for k = 1; : : : ; n, fk(x1; : : : ; xk) is

monic (i.e. has an invertible leading coe�cient) regarded as a polynomial in xk over

k[x1; : : : ; xk�1], and the ideal I = I(f1; : : : ; fn) is radical, i.e. is an intersection of prime

ideals. For such a triangular system S=I is a �nite sum of algebraic �eld extensions of

k. One can e�ectively compute in such extensions, as was discussed in [15]. Lazard pro-

posed to apply the D5 algorithm to decompose a zero dimensional polynomial system into

triangular ones. There is also another approach, suggested in [20].

Proposition 1 ([15, 20]) Let B be a zero dimensional polynomial system.

1. If I(B) is a prime ideal then a lexicographic Gr�obner basis of B is triangular.

2. For an arbitrary B there is an algorithm that computes a �nite number of triangular

systems T1; : : : ; Tm, such that

Z(B) =
[
i

Z(Ti)

is a decomposition (over k) of Z(B) into pairwise disjoint sets of points.

Note that although such a decomposition may be found not involving any (full) fac-

torization but only gcd computations, it is usually of great bene�t to try to factor the

system B �rst into smaller pieces, since the size of the systems drastically in
uences the

computational amount necessary for a triangulation.

2.2 Polynomial systems with in�nitely many solutions

If P = I(B) is a prime ideal of positive dimension the corresponding variety Z(B) may be

parameterized by the generic zero of P using reduction to dimension zero.

To describe this reduction we have to recall the notion of independent sets: For a given

ideal I � S, and a subset V � f1; : : : ; ng, the set of variables (xv; v 2 V ) is an independent

set i� I\k[xv; v 2 V ] = (0). That is the variables (xv; v 2 V ) are algebraically independent

mod I. Hence if (xv ; v 2 V ) is a maximal (with respect to inclusion) independent set for the

ideal I(B), these variables can be regarded as parameters whereas the remaining variables

depend algebraically on them.

This corresponds to a change of the base ring S �! ~S := k(xv; v 2 V )[xv ; v 62 V ], where
~S is the ring of polynomials in xv; v 62 V with coe�cients in the function �eld k(xv; v 2 V ).

This base ring extension corresponds to a localization at the multiplicative set of nonzero

polynomials in the variables (xv; v 2 V ). The extension ideal I � ~S is a zero dimensional

ideal in ~S and the algorithms mentioned so far can be applied. For a prime ideal, we

get I = I � ~S \ S, i.e. the generic zero describes a prime ideal I completely, presenting

the quotient ring Q(S=I) = Q( ~S=~I) as a �nite algebraic extension of k(xv : v 2 V ). For

arbitrary ideals I(B), the localization may cut o� some of the components of Z(B) that

must be parameterized separately. This can be done in an e�ective way, see [14].
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As for zero dimensional ideals, such a presentation is not restricted to prime ideals. In

more generality, let T = ff1; f2; : : : ; fmg be a set of polynomials in S. We say that T forms

a triangular system with respect to the maximal independent set (xv ; v 2 V ) of I = I(T ),

if the extension ~T of T to ~S := k(xv ; v 2 V )[xv ; v 62 V ] forms a triangular system for the

(zero dimensional) extension ideal ~I := I � ~S.
Such a triangular system may be regarded as a parameterization of Z(I ~S \ S), i.e. of

the components of Z(T ) missing the multiplicative set k[xv ; v 2 V ] n f0g. Hence a general

polynomial system solver should (at least) decompose a given system of polynomials B into

triangular systems, de�ning for each of them the independent variables, extracting the part

of Z(B) parameterized this way, and describing recursively the remaining part of Z(B).

Altogether we can formulate the following

Polynomial System Solving Problem:

Given a �nite set B � S of polynomials, �nd a collection (Tk; Vk) of triangular

systems Tk with respect to Vk � fx1; : : : ; xng, such that

� Ik := I(Tk) � k(xv; v 2 Vk)[xv ; v 62 Vk] \ S is a pure dimensional radical

ideal with Vk as a maximal strongly independent set,

� Z(B) =
S
Z(Ik), and

� this decomposition is minimal.

Note that due to denominators occuring in k(xv; v 2 Vk) the system Tk yields a param-

eterization of only \almost all" points of Z(Ik). By geometric reasons one cannot expect

more, since even simple examples of algebraic varieties show that a rational parameteriza-

tion may miss some points on the variety, see e.g. [3, ch. 3] for details. Since Z(Ik) is the

algebraic closure of the parameterized part, for each point X 2 Z(Ik) there is at least a

curve of parameterized points approaching X.

Let's conclude this section with a little example:

Consider the system B = fx3�y2; x y�zg. A lexicographic Gr�obner basis computation

yieldsG = fy5�z3; x z2�y4; x2 z�y3; x y�z; x3�y2g. Hence (z) is a maximal independent

set by [11] and G0 = fy5 � z3; x (z2)� y4g a triangular system with respect to (z) (and a

minimal Gr�obner basis of I(G) � ~S). Rewinding this tower of extensions over �k we get as

parameterization of Z(B) the �ve branches

f(z 2

5 ; z
3

5 ; z) : z 2 �kg

corresponding to the di�erent choices of the branch of 5
p
z. Note that these branches may

be parameterized by a unique formula

Z(B) = f(t2; t3; t5) : t 2 �kg;

i.e. the variety is rational. It's a deep geometric question to decide whether an irreducible

variety admits a rational parameterization and in the case it does to �nd one, see e.g., [21].

Since none of the CAS under consideration invokes such algorithms with their solver, we

will not address this question here. Note that moreover in most applications the structure
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of the prime components is very easy. Often they may be either regularly (polynomially)

parameterized (reg. par.)

fxk � pk(x1; : : : ; xd) j k = d+ 1; : : : ; ng; pk 2 k[x1; : : : ; xd];

rationally parameterized (rat. par.)

fxk � pk(x1; : : : ; xd) j k = d+ 1; : : : ; ng; pk 2 k(x1; : : : ; xd)

or are zero-dimensional primes in general position (g.p.)

fxk � pk(xn) j k = 1; : : : ; n� 1g [ fpn(xn)g; pk 2 k[xn]:

3 A �rst example

To get a �rst impression about the power of the polynomial system solver implemented in

di�erent CAS, let's Solve a very simple one dimensional system like the Arnborg example

A4, cf. [6].

vars := fw; x; y; zg
polys := fwxy+wxz+wyz+xyz;wx+wz+xy+ yz; w+x+ y+ z; wxyz� 1g

The Gr�obner factorizer yields easily the following (already prime) decomposition into

two one dimensional components:

ffw + y; x+ z; yz � 1g; fw + y; x+ z; yz + 1gg
MuPAD, Macsyma, and Mathematica obviously don't use the Gr�obner factorizer. For

example, MuPAD returns the answer

f[w = �x� y � z; x = � z5�z
z4�1 ;

z = RootOf (�y � z + y2z3 + y3z2; z);

y = RootOf (�z4 � y2z2 + y2z6 + 1; y)]g
This looks like the result of a Gr�obner basis computation without factorization. Besides

the fact that z5�z
z4�1 may be further simpli�ed to z, the answer is very unsatisfactory since the

last two expressions suggest that the zero set is �nite. This can't be checked immediately,

since there is no direct way to extract approximate solutions from this result.

Macsyma returns as answer the list

ffw = �%r5; x = 1
%r5 ; y = %r5; z = � 1

%r5g;
fw = �%r6; x = � 1

%r6 ; y = %r6; z = 1
%r6g;

fw = �i; x = i; y = i; z = �ig; fw = i; x = �i; y = �i; z = ig;
fw = �1; x = 1; y = 1; z = �1g; fw = 1; x = �1; y = �1; z = 1g;
fw = �i; x = �i; y = i; z = ig; fw = i; x = i; y = �i; z = �ig;
fw = 1; x = 1; y = �1; z = �1g; fw = �1; x = �1; y = 1; z = 1gg

that contains the two expected one dimensional components together with a list of embed-

ded points.
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Mathematica returns the following result

ffw ! �1
z
; y ! 1

z
; x! �zg; fw ! 1

z
; y ! �1

z
; x! �zg;

fx! � 1
y
; z ! 1

y
; w ! �yg; fx! 1

y
; z ! � 1

y
; w ! �ygg

together with a warning

Solve::svars: Warning: Equations may not give solutions for all "solve"

variables.

We obtain four instead of two solution sets, possibly according to the fact whether z 6= 0

or y 6= 0 in y z � 1 respectively y z + 1. Such a distinction is unnecessary, since y z = 1

implies y; z 6= 0.

Maple and Reduce return the solution in the expected form

ffx = �z; y = z�1; w = �z�1; z = zg; fx = �z; y = �z�1; w = z�1; z = zgg
Calling solve(polys,vars) with Axiom 2.0 ends up with the message

Error detected within library code:

system does not have a finite number of solutions

whereas a direct call of the Gr�obner factorizer

> groebnerFactorize polys

returns (almost) the expected answer

[[1]; [z + x; y + w;wx+ 1]; [z + x; y + w;wx � 1]]

4 Solving zero dimensional systems

As explained above, zeroes of univariate polynomials of degree �ve don't admit closed form

representations in radicals in general and even for polynomials of degree 3 and 4, these

expressions are usually so di�cult that they cause great trouble during simpli�cation of

derived expressions. Moreover the evident degree reduction rule for a single RootOf symbol

leads to a normal representation of rational expressions containing this symbol. Hence it

has become a certain standard to represent algebraic numbers even of small degree occuring

in the solution set of a polynomial system through a RootOf construct.

Functional symbols such as RootOf are ubiquitous objects in symbolic computations to

construct new symbolic expressions from old ones. The target of the simpli�cation system

of a CAS is to make cooperate the inner world of the symbolic structure of the arguments

and the outer world of the environment of the functional symbol, e.g. expanding arguments

over function symbols, collecting expressions together, or applying rules to combinations

of symbols.

In this context, the RootOf symbol plays a special role, since, di�erent to most other

functional symbols, it stands for a compound data structure and should expand in a proper

way in di�erent situations, i.e. expand partly or completely into the promised data structure

under substitution of values for parameters, during approximate evaluation etc.

The �rst three examples show how di�erent CAS manage this di�culty.

Example 1:
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vars := fx; y; zg
polys := fx2 + y + z � 3; x+ y2 + z � 3; x+ y + z2 � 3g

This system has 8 di�erent complex solutions. The set of solutions is stable under cyclic

permutations of the coordinates as are the equations. Note that the univariate polynomial

of least degree in z (and, by symmetry, also in x and in y) belonging to I(polys) has only

degree 6.

Systems that involve factorization have no trouble decomposing this system. The CAS

under consideration answer in the following way:

Maple:

sol := ffy = �3; x = �3; z = �3g; fz = 1; x = 1; y = 1g;
fz = RootOf ( Z 2 � 2); y = RootOf ( Z 2 � 2); x = �RootOf ( Z 2 � 2) + 1g;
fz = RootOf ( Z 2 � 2); y = �RootOf ( Z 2 � 2) + 1; x = RootOf ( Z 2 � 2)g;
fx = �RootOf (�2 Z � 1 + Z 2) + 1; z = RootOf (�2 Z � 1 + Z 2);

y = �RootOf (�2 Z � 1 + Z 2) + 1gg

Axiom:

sol := [[x = 1; y = 1; z = 1]; [x = �3; y = �3; z = �3];
[x = �z + 1; y = �z + 1; 2z2 � 2z � 1 = 0];

[x = z; y = �z + 1; z2 � 2 = 0]; [x = �z + 1; y = z; z2 � 2 = 0]]

Macsyma and Reduce:

sol := ffx =
p
2 + 1; y = �p2; z = �p2g; fx =

p
2; y =

p
2; z = �p2 + 1g;

fx =
p
2; y = �p2 + 1; z =

p
2g; fx = �p2 + 1; y =

p
2; z =

p
2g;

fx = �p2; y = p
2 + 1; z = �p2g; fx = �p2; y = �p2; z = p

2 + 1g;
fx = 1; y = 1; z = 1g; fx = �3; y = �3; z = �3gg

Mathematica and MuPAD have some trouble to extract the solution set in such clarity.

Mathematica returns the correct answer

sol := ffx! �3; y ! �3; z ! �3g; fx! 1; y ! 1; z ! 1g;
fx! 2

p
2 + 8

2�4
p
2
� 2

p
2

2�4
p
2
; y ! �8+2

p
2

2�4
p
2
; z ! 2�2

p
2

2 g;
fx! 1�

p
9�4

p
2

2 ; y ! 1+
p

1�4 (�2+
p
2)

2 ; z !p
2g;

fx! 1+
p

9�4
p
2

2 ; y ! 1�
p

1�4 (�2+
p
2)

2 ; z !p
2g;

fx! �2p2 + 8
2+4

p
2
+ 2

p
2

2+4
p
2
; y ! �8�2

p
2

2+4
p
2
; z ! 2+2

p
2

2 g;
fx! 1�

p
9+4

p
2

2 ; y ! 1+
p

1�4 (�2�
p
2)

2 ; z ! �p2g;
fx! 1+

p
9+4

p
2

2 ; y ! 1�
p

1�4 (�2�
p
2)

2 ; z ! �p2gg;
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but even another application of Simplify doesn't convert the result into the simple form

returned by Reduce2.

The result of MuPAD is even worse. It returns a single solution

sol := f[x = 3� z2 � y; y = � z4�5z2+6
2z2�4

;

z = RootOf (�8z + 19z2 + 4z3 � 10z4 + z6 � 6)]g;
containing a RootOf expression of a reducible polynomial in z. Since the corresponding

Gr�obner basis isn't yet triangular, one has to be careful with prolongations of the zeroes

of this polynomial as z-coordinates to whole solution triples (x; y; z). Indeed, two of them,

z = �p2, may be prolongated in two di�erent ways each, and the formula given for y fails

in this case. Such a behaviour demonstrates once more the fact that it is not so easy to

extract a description of the solution set from a single (classical) Gr�obner basis of I(B).

Note that di�erent to the other systems, MuPAD doesn't o�er a subsequent numerical

evaluation of sol.

We conclude, that (for multivariate systems) Maple and Axiom use the RootOf notation

even for algebraic numbers of degree 2 whereas Reduce, Macsyma andMathematica promise

to handle such square root symbols as \normal" numbers. But even simple square roots

of integers may already cause trouble as in the Mathematica output of the solution above.

Although Reduce has no problem handling the square roots here, also in general, it often

runs into trouble with the default setting of the switch rationalize to o�. Correct (in

the given context) simpli�cations of square roots of complicated symbolic expressions cause

problems to all the CAS under consideration, see e.g., example 10 below.

Note that although Maple o�ers quite powerful algorithms to deal with the RootOf

symbol3, the return data type design of RootOf (P (x); x) is not satisfactory. Due to the

above syntax, it promises to return one of the roots of P (x) instead all of them. Hence

di�erent calls to RootOf should choose such a root independently. This is required for

di�erent elements of sol, but not for di�erent calls of RootOf inside the same element

of sol. The procedure allvalues tries to expand the di�erent roots properly either in

radicals (up to degree 4) or to approximate them numerically. It may be called with a

second parameter d to indicate that the same RootOf symbol in di�erent places has to be

expanded identically4. Issuing

> map(allvalues,sol,d);

we obtain the same answer as Macsyma and Reduce for this example. Note that this

approach run into trouble with nested RootOf expressions in ex. 4 below.

The concisest solution for these problems is o�ered by Mathematica: It's Roots com-

mand returns a (promise of a) logical conjunction of zeroes that is handled properly by

2Note that nevertheless the resubstitution

> polys/.sol//Simplify

proves the correctness of Mathematica's result inside the system.
3For example, the command

> sum(Q(x),'x'=RootOf(P(x),x))

returns a closed formula for polynomials P (x) and Q(x).
4
d was changed to dependent in Maple version V.4.
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subsequent substitutions, approximate evaluations, etc. The ToRules operator transforms

such a logical expression into a Sequence, i.e. (a promise of) comma separated expressions

that automatically expand in the argument list of functional symbols with variable argu-

ment list length (Set, List, etc.) whenever possible. For example, the parametric equation

f = x5 � 5x3 + 4x+ a yields with

> Solve[f==0,x]

the answer

fToRules[Roots[4x� 5x3 + x5 = �a; x]]g
that expands under the substitution %/.a ! 0 automatically into

ffx! 2g; fx! 1g; fx! 0g; fx! �1g; fx! �2gg

Reduce uses the RootOf symbol in a sense like Maple, but binds its value for a single

solution to a variable, hence resolving the ambiguity discussed above in a proper way.

Expansion into a list of individual solutions is done in two steps. First, the RootOf symbol

is changed automatically into the one of symbol with the desired list as argument. Second,

the user may call the command expand cases to expand this functional expression properly

inside a list of solutions. For the polynomial f , we get successively

> solve(f,x);

fx = root of(a+ x5 � 5 � x3 + 4 � x; x)g

> sub(a=0,ws);

fx = one of(f2; 1; 0; �1; �2g)g

> expand cases(ws);

fx = 2; x = 1; x = 0; x = �1; x = �2g:

Axiom follows another strategy. It doesn't introduce RootOf symbols in the output

of the solve command, but returns a list of (simpli�ed) systems of equations instead,

that may be further simpli�ed with the usual system command. To extract e.g., (real)

approximate solutions from the above symbolic answer one may call

> realsol:=concat([solve(u,0.001) for u in sol])

and then check the answer by

> [[subst(u,v) for u in polys] for v in realsol].
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A great di�culty for the CAS that use a RootOf notion remains the proper simpli�ca-

tion of expressions involving such symbols. A good benchmark for these capabilities is the

resubstitution test, i.e. the test whether the CAS may prove that the produced solutions

satisfy the initial equations. In our experiments only Maple was able to do these simpli�-

cations with satisfactory success, possibly after a subsequent call to the algebraic simpli�er

evala, that is not invoked with simplify.

Example 2:

vars := fx; yg
polys := fx4 + y + 1; y4 + y + 1g

This example has 16 di�erent complex solutions, none of them being real. It demon-

strates both the di�erence between an early use of RootOf expressions as in Axiom, Maple

and Reduce, full radical expansion of solutions of equations up to degree 4 as in Mathe-

matica 5, and the di�erence between triangular systems and a complete decomposition into

isolated prime components.

To begin with, note that for x > y, the given system of equations is already in triangular

form. Moreover, it is easily seen that x4 � y4 belongs to I(polys), i.e. the solution set may

be decomposed into

Z(polys) = Z(x+ y; y
4 + y + 1) [ Z(x� y; y

4 + y + 1) [ Z(x2 + y
2
; y

4 + y + 1):

Reduce ends up with the original triangular systems

sol := ffx = RootOf (x4 + x+ 1; x); y = RootOf (x+ y4 + 1; y)gg

whereas Maple and Axiom �nd the decomposition (probably by some ad hoc method).

Mathematica computes 16 explicit solutions sol, very complicated formulae, that it isn't

able to handle further symbolically. For example, the test

> polys/.sol//Simplify

fails to return 0. Checking the numerical approximations N[sol] with

> polys/.N[sol]

we detect 8 of the 16 approximations to be wrong.6

Macsyma resolves all that \trouble" in a di�erent way: If results become too compli-

cated it switches automatically to numerical solutions. For this purpose there are several

root �nding devices as e.g., for real and complex roots, for counting roots inside a real

interval, for approximation of roots by di�erent methods, etc. No RootOf philosophy is

5MuPAD returns the strange answer

f[y = RootOf (�y2 + RootOf (x+ y2 + 1; y)); x = RootOf (x+ x4 + 1)]g:

6Note that this default behaviour may be turned o� by

> SetOptions[Roots,Cubics->False,Quartics->False]

Then the resulting expression is evaluated numerically in a proper way.
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supported. Of course, such an approach doesn't work for equations with parametric coef-

�cients as, e.g., for f = x5 � 5x3 + 4x + a. For those systems Macsyma follows the same

philosophy as Axiom, i.e. returns simpli�ed equations that may be subsequently handled

with the Lisp-like system language.

Let's digress for a moment to the numerical solving capabilities for zero dimensional

systems o�ered by the other CAS in the case the user isn't satis�ed with the symbolic

answer (as it probably will be the case in our situation).

As we already mentioned, Mathematica is best suited for such approximate solutions,

since the numerical evaluator may be involved in a uni�ed way in almost all situations.

Besides the easy (but in this case wrong) approximate evaluation of the symbolic results

themselves, one can also solve the system approximately with

> NSolve[polys,vars]

to obtain 16 correct solutions.

For Axiom we may proceed as above. Starting from the symbolic solution

> sol:=solve(polys,vars)

the complex system's solver

> csol:=concat([complexSolve(u,0.00001) for u in sol])

may be involved. It returns 16 complex solutions that may be checked to be correct in the

same manner as above

> [[subst(u,v) for u in polys] for v in csol]

Reduce invokes approximate algorithms, switching with on rounded to 
oating point

arithmetic. Calling solve(polys,vars) directly returns the 16 complex solutions. The

situation becomes more di�cult starting from the symbolic solution sol. Switching to


oating point arithmetic, the root of expressions are changed into one of expressions

ffx = one of(f0:934099289461 � i+ 0:727136084491; : : :g);
y = one of(f(�(x+ 1))0:25 � i; : : :g)gg;

that may be expanded via Expand Cases into 16 complex solutions

ffx = 0:934099289461 � i+ 0:727136084491; y = (�(x+ 1))0:25 � ig; : : :g

In each of them y is expressed not as a complex number but as a formula, and even

resubstitution doesn't simplify these expressions to complex numbers since Reduce can't

compute powers of complex numbers with real exponents.

Maple's fsolve returns only a single numerical approximate solution instead of all of

them. Expanding the RootOf expressions with allvalues fails in reasonable time, since it

tries to express them in radicals. There is no way to avoid this.

MuPAD has not yet facilities to extract numerical solutions from the above system.

Example 3: The Katsura example K4, [2, p. 91]
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vars := fu0; u1; u2; u3g
polys := fu0 + 2u1 + 2u2 + 2u3 � 1; u20 + 2u21 + 2u22 + 2u23 � u0;

2u0u1 + 2u1u2 + 2u2u3 � u1; 2u0u2 + u21 + 2u1u3 � u2g

Its zero set decomposes into two points with rational coordinates and another one with

coordinates depending on an algebraic number of degree 6. Reduce, Maple and Axiom

return almost immediately the correct answer

[[u0 = 1; u1 = 0; u2 = 0; u3 = 0]; [u0 =
1
3 ; u1 = 0; u2 = 0; u3 =

1
3 ];

[u0 =
�381533328 u5

3
+97717752 u4

3
+12529296 u3

3
�5057432 u2

3
+7598 u3+147793

168945 ;

u1 =
�5452920 u5

3
+1977048 u4

3
+589356 u3

3
�177864 u2

3
�17866 u3+4768

11263 ;

u2 =
272560464 u5

3
�78514596 u4

3
�15104988 u3

3
+5196676 u2

3
+95246 u3�60944

168945 ;

42768 u63 � 16848 u53 � 432 u43 + 904 u33 � 72 u23 � 12 u3 + 1 = 0]];

that expands numerically into the 2 rational, 4 real and 2 complex conjugate solutions.

This can be proved with Axiom, Maple and Reduce as indicated during the discussion of

example 2.

Mathematica returns a complicated formula with �ve (!) nested Roots expressions to

determine the four indeterminates, that nevertheless correctly evaluates numerically to the

8 solutions of the system under consideration.

Macsyma �nds the two rational and one further real solution.

Let's conclude this section with some more di�cult examples, collecting the results in

Table 1a { 1e. The �rst two columns (symbSolve) are devoted to the symbolic solver's

behaviour. The structure column collects information about the degree of the di�erent

branches. The latter columns describe the numeric solver's output (numSolve1) and the

numeric approximation of the symbolic results (numSolve2). All timings are given in sec-

onds of CPU-time as reported by the corresponding CAS.

Let's start with the results for the example 3:

symbSolve numSolve1 numSolve2

time structure time structure time structure

Axiom 10.8 (2x1 1x6) 134.6 8 sol. 176.2 8 sol.

Macsyma 10.2 3 sol. | |

Maple 1.6 (2x1 1x6) | 0.3 8 sol.

Mathematica 0.4 5 nested Roots 0.5 6 sol. 0.1 8 sol.

Reduce 0.6 (2x1 1x6) 2.6 8 sol. 0.5 8 sol.

Table 1a: Solving example 3

Example 4:

vars := fx; y; zg
polys := fx3 + y + z � 3; x+ y3 + z � 3; x+ y + z3 � 3g

13



The result contains several branches of degree 6, some of them are quadratic extensions

of cubic ones. This explains the di�erent branching of Reduce compared to Maple and

Axiom.

symbSolve numSolve1 numSolve2

time structure time structure time structure

Axiom 61.9 (1x1 1x2 4x6) 383 27 sol. 251 27 sol.

Macsyma 39.9 25 sol. | |

Maple 2.8 (1x1 1x2 4x6) | 1.8 39 sol.

Mathematica 160.7 11 branches 0.54 18 sol. 0.4 21 sol.

Reduce 1.7 (3x1 2x3 3x6) 14.4 27 sol. 1.5 27 sol.

Table 1b: Solving example 4

Note that both Maple and Mathematica expand their symbolic results into a wrong number

of solutions. Maple expands one of the branches of degree 6 improperly: A RootOf symbol

of degree 2 nested with another RootOf symbol of degree 3 is expanded into 18 instead

of 6 solutions, probably due to a wrong application of allvalues. Surprisingly enough,

resubstitution proves only 6 of these solutions to be wrong.

Example 5: The Arnborg example A5, [6]

vars := fv; w; x; y; zg
polys := fv + w + x+ y + z;

v w + v z + wx+ x y + y z;

v w x+ v w z + v y z + w xy + x y z;

v w x y + v w x z + v w y z + v x y z + w xy z;

v w x y z � 1g

This is already a quite hard example. The ideal is radical and of degree 70, i.e. has 70

di�erent complex solutions.

symbSolve numSolve1 numSolve2

time structure time structure time structure

Axiom 34 677 (5x2 15x4) 49 276 70 sol. 202 70 sol.

Maple 740 (5x2 10x4 2x16) | zero divide error

Reduce 13.5 (10x1 12x4 1x12) 82.4 70 sol.
RootOf not

properly expanded

Table 1c: Solving example 5

Macsyma and Mathematica were unable to crack this example. MuPAD returned a strange

result, consisting of a single branch containing an equation of degree 15 for z and an

equation of degree 2 depending on z for y. Altogether this may be expanded into at most

30 solutions. For numSolve2, Reduce couldn't resolve the complicated RootOf expression

properly. Maple couldn't expand the symbolic branches, too, but crashed with a zero divide

error.

Example 6:
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vars := fx; y; zg
polys := fx3 + y2 + z � 3; x+ y3 + z2 � 3; x2 + y + z3 � 3g

symbSolve numSolve1 numSolve2

time structure time structure time structure

Axiom 47.7 (1x1 1x2 1x24) > 25 000 > 25 000

Macsyma 36.7 25 sol. | |

Maple 11.3 (1x1 1x2 1x24) | 5.6 27 sol.

Mathematica 4396 (3x1 1x24) 593 3 sol. 0.6 27 sol.

Reduce 21.1 (3x1 1x24) 60.2 27 sol. 13.5 27 sol.

Table 1d: Solving example 6

Example 7: The Katsura example K5, [2, p.91]

vars := fu0; u1; u2; u3; u4g
polys := fu0 + 2u1 + 2u2 + 2u3 + 2u4 � 1;

u20 + 2u21 + 2u22 + 2u23 + 2u24 � u0;

2u0u1 + 2u1u2 + 2u2u3 + 2u3u4 � u1;

2u0u2 + u21 + 2u1u3 + 2u2u4 � u2;

2u0u3 + 2u1u2 + 2u1u4 � u3g

symbSolve numSolve1 numSolve2

time structure time structure time structure

Axiom 80.0 (2x1 1x2 1x12) > 25 000 > 25 000

Maple 127.5 (2x1 1x2 1x12) | 0.9 16 sol.

Reduce 27.2 (4x1 1x12) 34.1 16 sol. 2.4 16 sol.

Table 1e: Solving example 7

Macsyma and Mathematica were unable to crack this example.

5 Zero dimensional systems with parameters

As explained in section 2, zero dimensional polynomial systems with parameters play an

important intermediate role solving polynomial systems with in�nitely many solutions.

Let's therefore study the behaviour of the di�erent CAS on this topic separately.

Considering e.g., the parametric (linear) system in the variables fx; yg

polys := fa x + y � 1; x + a y � 1g

one may pose the following two di�erent problems:

(1) Find a description of the solution set for each possible value of the parameter a.

(2) Find a description of the \generic" solution set valid for \almost all" values of a.
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Both problems may be solved with Gr�obner bases with respect to special term orders. For

the �rst problem, one has to decompose the variety of solutions in (x; y; a) into components

and for each of them to express (x; y) through the parameter a whenever a is not �xed

(and possibly to understand the �ber structure of this component). This may be done with

respect to a term order where a is lexicographically less than both x and y. The Gr�obner

factorizer yields the simple solution

ffx = y = 1
a+1gg

for a 6= 1 (i.e. the empty set for a = �1) and the one parameter solution

ffx = 1� y; y = ygg

for a = 1. It should be possible to �nd this decomposition with

> solve(polys,fx,y,ag)
For the second problem, we solve the system over the coe�cient �eld k = Q(a) of

rational functions in the parameter a. This should be possible to realize with

> solve(polys,fx,yg)
In the following table we collected the behaviour of the di�erent CAS under considera-

tion with respect to our expectations:

Problem (1) Problem (2)

Axiom
Only groebnerFactorize returns

the expected decomposition
One solution as expected

Macsyma Two solutions as expected One solution as expected

Maple Reorders variables automatically One solution as expected

Mathematica One solution as expected for (2)7 correct, but not simpli�ed

MuPAD Reorders variables automatically One solution as expected

Reduce Two solutions as expected One solution as expected

We tested the di�erent CAS on the following examples of zero dimensional (non linear)

systems for a solution in the sense of (2):

Example 8: A parametric version of A4, with parameter z.

vars := fw; x; yg
polys := fwxy+wxz+wyz+xyz;wx+wz+xy+ yz; w+x+ y+ z; wxyz� 1g

Example 9: Raksanyi's example, [2, example 6], with parameters a; u; v; w.

vars := fx; y; z; tg
polys := ft� (a� v); x+ y+ z+ t� (u+w+ a); xz+ xt+ yz+ zt� (ua+ uw+

wa); xzt � (uwa)g
7But Reduce[polys==f0,0g,vars] does the desired job.
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This system has three rationally parameterized solutions.

Example 10: The ROMIN 3R-robot [10] with parameters a; b; c; l1; l2

vars := fs1; s2; s3; c1; c2; c3; dg
polys := fa+ ds1;�b+ c1d; c2l2+ c3l3� d;�c+ l2s2+ l3s3; c

2
1+ s21� 1; c22+ s22�

1; c23 + s23 � 1g

This system has 4 solutions, two in each branch of d = �pa2 + b2.

Here are the results for the examples 8 { 10 :

Example 8 Example 9 Example 10

time time time structure

Axiom 0.7 7.9 49.3 1 sol. of degree 4

Macsyma 0.5 0.5 1183 4 explicit sol.

Maple 0.4 0.2 1.5 empty8

Mathematica 0.13 0.25 11.5 4 explicit sol.

Reduce 0.6 0.16 369 1 sol. of degree 4

Table 2: Solving zero dimensional systems with parameters

Let's add some remarks about the output. For ex. 8 and 9, all systems produced the

expected rationally parameterized branches, only Mathematica's output for ex. 8 contained

repetitions. For example 10, Axiom returned the shortest form with two quadratic equa-

tions (for c3 and d2 � a2 � b2 = 0) not resolved since it doesn't expand quadratic RootOf

symbols. Macsyma produced 4 solutions with many complicated sqrt symbols that it

wasn't able to handle during resubstitution. The same did Mathematica, but it could

check the result sol to be correct with

> polys/.sol//Simplify//Together

Reduce returned a single solution in terms of rational expressions in a; b; c; l3 and a RootOf -

expression for c3 instead of d (although suggested in vars to consider d as the lowest

variable) that it could not handle in a subsequent resubstitution step.

6 Systems with in�nitely many solutions

Let's now analyze the behaviour of the di�erent CAS under consideration to solve polyno-

mial systems with solution sets of positive dimension.

The �rst example was contributed by one of our students who tried to study the extrema

of f(x; y) = x3y2(6 � x� y). It may easily be solved by hand, but already causes trouble

trying to be solved automatically:

Example E1:

vars := fx; yg
polys := fx2y2(�4x� 3y + 18); x3y(�2x� 3y + 12)g

8Note that with Maple V.4 on a Sun UltraSparc, within 1.68 s I obtained a single solution of degree four

similar to that of Axiom.
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Another quite impressive example was posted by E. Krider on June 1, 1996 in the news

group sci.math.symbolic. It behaves like many examples arising from applications that,

in contrast to their heavy input size, become tame after inter-reduction and splitting, since

the individual components tend to be prime and may be presented in a simple (but not

too simple) form.

Example Kri: Krider's example:

P0 := �6cg2upv5� 2(2cd+a+ bd+ b+ cd2+wbf �w+2wcdf +2wcf +w2bg+

2w2cg + 2w2cdg + w2cf2 + 2w3cfg + cg2w4)upv � 2(bg + 2cg + 2cdg + cf2 +

6wcfg + 6cg2w2)upv3 � 2cu3pv;

P1 := �6cg(2f+5gw)upv5�2(2cd+a+bd+b+cd2+wbf�w+2wcdf+2wcf+

w2bg + 2w2cg + 2w2cdg + w2cf2 + 2w3cfg + cg2w4)wupv � 2(bf � 1 + 2cdf +

2cf + 3wbg + 6wcg + 6wcdg + 3wcf2 + 12w2cfg + 10cg2w3)upv3 � 2wcu3pv;

P2 := �6(bg+2cg+2cdg+ cf2+10wcfg+15cg2w2)upv5� 2(2cd+a+ bd+ b+

cd2 +wbf �w + 2wcdf + 2wcf +w2bg + 2w2cg + 2w2cdg +w2cf2 + 2w3cfg +

cg2w4)w2upv�2(a+b�3w+6wcf+15cg2w4+6w2cf2+12w2cg+6w2bg+3wbf+

12w2cdg + 20w3cfg + 6wcdf + bd+ cd2 + 2cd)upv3 � 30cg2upv7 � 2w2cu3pv �
2cu3pv3;

M0 := �6cg2upv5�2(a+bd+cd2�w+wbf+2wcdf+w2bg+2w2cdg+w2cf2+

2w3cfg + cg2w4)upv � 2(bg + 2cdg + cf2 + 6wcfg + 6cg2w2)upv3 � 2cu3pv;

M1 := �6g(bg + 3cdg + 3cf2 + 15wcfg + 15cg2w2)upv5 � 2(a+ bd+ cd2 �w+

wbf +2wcdf +w2bg+2w2cdg+w2cf2+2w3cfg+ cg2w4)(d+ fw+ gw2)upv�
2(�f � 3gw + 3cdf2 + 3wcf3 + 18w2cdg2 + 30w3cfg2 + 6gwbf + 18gwcdf +

18gw2cf2 + ga + bf2 + 6w2bg2 + 15cg3w4 + 2gbd + 3gcd2)upv3 � 30cg3upv7 �
2(b+ 3cd+ 3wcf + 3w2cg)u3pv � 6cgu3pv3;

M2 := �2(a + bd + cd2 � w + wbf + 2wcdf + w2bg + 2w2cdg + w2cf2 +

2w3cfg + cg2w4)(d + fw + gw2)2upv � 2(�6wgd + 120w3cdfg2 + 12wcdf3 +

60w4cdg3+40w3cf3g+90w4cf2g2+84w5cfg3+6agfw+18bdgfw+18bdg2w2+

36cd2gfw+ 36cd2g2w2 + 18w2bf2g + 30w3bfg2 + 72w2cdf2g + af2 � 10g2w3 �
3wf2 � 2df + 3bd2g + 3bdf2 + 4cd3g + 6cd2f2 � 12gfw2 + 3wbf3 + 15w4bg3 +

6w2cf4 + 28cg4w6 + 2agd + 6ag2w2)upv3 � 6(12gcdf2 + 20gwcf3 + 15g2wbf +

60g2wcdf + 60g3w2cd + 90g2w2cf2 + 140g3w3cf + g2a � 5g2w � 2gf + cf4 +

3g2bd + 6g2cd2 + 15g3w2b + 70g4cw4 + 3gbf2)upv5 � 210cg4upv9 � 30g2(bg +

4cdg+6cf2+28wcfg+28cg2w2)upv7�2(a+3bd+6cd2�w+3wbf +12wcdf +

3w2bg + 12w2cdg + 6w2cf2 + 12w3cfg + 6cg2w4)u3pv � 6(bg + 4cdg + 2cf2 +

12wcfg + 12cg2w2)u3pv3 � 36cg2u3pv5 � 6cu5pv;

vars := fa; b; c; d; f; g; u; v; w; pg;
polys := fP0; P1; P2;M0;M1;M2g;

The other examples we used to test the di�erent solvers are well documented elsewhere.

The complete sources are available from our Web site
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http://www.informatik.uni-leipzig.de/~compalg/ca/preprints/aca.test

Example G1: [8, eq. (4)], see also [13, ex. G1]

Example G6: [8, eq. (8)], see also [13, ex. G6]

Example Go:

The (quasi)homogenized version of Gonnet's example from [2], see also [13, ex. Go].

Example G7: [7, eq. (6)], see also [13, ex. G7]

For the convenience of the reader we collected in table 3 some input and output char-

acteristics of the systems under consideration as they may be computed using e.g., our

Reduce package CALI [12]. The number of solutions returned by the di�erent CAS is not

invariant, since it may vary due to di�erent parameterizations. Indeed, even the simple

system fy2 � xg may be parameterized either as fy = �px; x = xg or as fx = y2; y = yg.
# sol reports the number of isolated primes (over k), a geometric invariant. In the column

dimensions an entry AxB indicates A components of dimension B among these primes.

example # eq. #vars # sol dimensions structure

A4 4 4 2 2x1 all rat. par.

E1 2 2 3 2x1 1x0 all reg. par.

G1 13 7 9 1x3 3x2 5x1 all reg. par.

G6 4 4 8 1x2 7x1 all reg. par.

Kri 6 10 6 3x9 3x4 see below

Go 19 18 7 1x7 1x6 2x5 3x4 see below

G7 12 10 20 4x6 4x5 11x4 1x3 see below

Table 3 : Input and output characteristics

The form of the output of the latter three examples has a more di�cult structure: The

9-dimensional branches in Krider's example are fu = 0g; fv = 0g and fp = 0g, whereas
the four dimensional branches correspond to the di�erent factors of u4 � 16. Each of

them contains another polynomial in f of degree 2. Hence by our experience obtained so

far, we would expect that they are completely decomposed by Reduce into 8 rationally

parameterized branches whereas Maple and Axiom will return 3 branches instead.

For Gonnet's example, the components may be rationally parameterized, but this is not

obvious from the Gr�obner bases in the output collection of the Gr�obner factorizer regardless

of the fact that they are already primes.

For G7 we refer to the end of this section.

Let us �rst report about the CAS that failed to give satisfactory answers for higher

dimension:

MuPAD: Even for the very simple system E1 it returns the strange answer

f[x = RootOf (�12x3y + 2x4y + 3x3y2; x); y = 0]g
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The polynomial system solver of the version 1.2.9 (seriously improved in release 1.3.,

see below) computes a single Gr�obner basis and extracts from the result a presentation of

the solution that is not correct except for very simple cases.

Mathematica: We tested it with some of the easier examples above and got the following

behaviour:

� For E1 it reports after 0.2 s. 25 zero dimensional solutions.

� For the example A4 see above.

� For G1 it reports after 1025 s. a list of about 10000 solutions with many repetitions

of dimension � 1 that we did not try to analyze.

� For Gonnet's example it reports after 58.2 s. 20 solutions, all of dimension 4, con-

taining only two really di�erent ones (the same e�ect as for A4).

� The same applies to G6 : After 23.6 s. there were returned 6 one dimensional

solutions, missing f�3 = �4 = 0g and f�4 = �5 = 0; �1 = 1g.
� Kri and G7 it was unable to solve.

Macsyma: For A4 see above. The result of E1 is the expected one. All other nonzero

dimensional examples in our test suite it was unable to solve in reasonable time (but see

the report about the new version of the solver below).

Axiom: As already seen above with A4, the solver returns an error message for sys-

tems with in�nitely many solutions. The Gr�obner factorizer can be accessed directly to

decompose the system into pieces. With

> groebnerFactorize polys

for A4 and E1 we get the answers

[[1]; [z + x; y + w; w x+ 1]; [z + x; y + w; w x� 1]]

and

[[y � 2; x� 3]; [y; x� 6]; [y]; [1]; [x]]

In both cases, super
uous (embedded) branches occur in the output collection. This is

probably due to the recursive implementation of the Gr�obner factorizer. An early elimina-

tion of such branches may lead to a signi�cant speed up of the computations, as shown by

the example Go. Here Axiom returns 192 branches, but only 7 of them are really necessary.

The same holds for Maple's Gr�obner factorizer implementation.

Due to our observations so far, we tried to calculate the examples mentioned above with

the Solve facility of Maple and Reduce and the groebnerFactorize facility of Axiom.

In Table 4 we collected the results of these experiments. The �rst column contains the

corresponding computation (CPU-)time in seconds as reported from the system, the second

the number of �nal branches in the answer. Since both Axiom and Maple usually return

also embedded solutions that are completely covered by other branches, we report both the

number of branches returned by the system and the number of essential branches among

them.
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ex. Reduce Axiom Maple

time # branches time # branches time # branches

G1 1.7 9 7.5 16/9 6.8 15/9

G6 0.75 8 13.5 12/8 15.7 8

Go 46.0 9 2022 192/7 2.3 10/7

Kri 12.3 11 5011 60/7 64.3 19/19

G7 125 33 1350 266/22 67.2 77/24

Table 4 : Run time experiments with di�erent CAS

Some words about the quality of the output for the more advanced examples. As already

explained above, the polynomial system solver passes through two phases: it �rst decom-

poses the system into smaller, almost prime components, and then tries to parameterize

them. The second pass is not executed by Axiom's solver. For Gonnet's example, Maple

was su�ciently smart to �nd the rational parameterization of all components (but couldn't

remove embedded solutions), whereas Reduce introduced square root symbols for the pa-

rameterization of the components of dimension four. Both CAS successfully resubstituted

their results into the polynomial system to be solved.

For Krider's example, Reduce returned the expected answer whereas Maple recognized

the special biquadratic structure of the four dimensional branches and splitted them in an

early stage of the computation. It returned 4 branches for each of the factors u + 2 and

u� 2 and 8 branches for the factor u2 + 4, thus splitting primes over Q into collections of

primes over Q(i;
p
2). Maple resubstituted its results successfully whereas Reduce couldn't

handle its output during resubstitution.

For G7 the 20 prime components over Q were split during parameterization into smaller

components over extension �elds, introducing several square root symbols. Reduce returned

23 rational branches, 6 branches containing square roots of integers and 4 branches contain-

ing square roots of more complicated symbolic expressions. All of them could be managed

to simplify to zero during resubstitution. Maple couldn't simplify one of the expressions

obtained with a symbolic expression's square root during resubstitution.

7 Conclusions

Among the current versions of the general purpose CAS under consideration only Reduce

(3.6) and Maple (V.3) o�er satisfactory solve functionality for more advanced polynomial

systems. Reduce was usually faster for those examples where it didn't try to introduce

square roots into the representation of the solution. Maple (and Axiom) split all examples

in a correct way but usually returned super
uous components that were completely covered

by other branches. Note the seriously improved behaviour of Maple compared to version V.2

as reported in [13]. Maple was the only system that, with some additional help, could handle

RootOf symbols introduced during the solution process in a subsequent resubstitution step

in a proper way.

Axiom (2.0) can decompose systems well (but not very fast), but there is not yet a

facility integrated into the solver that allows systems with an in�nite set of solutions to be

handled.
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Macsyma (420) and Mathematica (2.2) have serious problems, especially with higher

dimensional systems, whereas the polynomial system solver of MuPAD (1.2.9) is in a very

rudimentary state (but note that all three CAS improved their solvers meanwhile).

The algebraic solvers of Axiom, Maple, and Reduce are centered around an implementa-

tion of the Gr�obner factorizer whereas the other systems use di�erent techniques, including

the computation of (classical) Gr�obner bases. The latter are often less e�ective since they

interweave factorization and Gr�obner basis computation in a less intrinsic way compared to

the Gr�obner factorizer. For example, Macsyma's solver �rst computes a classical Gr�obner

basis and calls the factorizer only on the resulting polynomials to split the system into

smaller pieces. Afterwards it applies resultant based elimination techniques to extract a

triangular form for each of these components.

8 What's going on ?

As already explained in the introduction the present paper can give no more than a snap-

shot of the state of the implementation of symbolic solving methods in the di�erent CAS

under consideration. Let's nevertheless add some remarks about developments going on or

(almost) �nished that we became aware of during the preparation of this report.

First, due to the \general nonsense overhead", the implementational restrictions caused

by the underlying (higher symbolic) programming language, a rigid hierarchy of code trans-

parency, and the (mostly undocumented) hidden dependencies between di�erent parts, gen-

eral purpose CAS are not well suited for solving di�cult advanced systems e�ectively. For

really hard systems specially designed implementations are needed.

Such highly specialized, very e�ective systems (to name some of the widely used systems

centered around the Gr�obner algorithm: CoCoA, GB, Macaulay, Singular) are top software

products in the sense that they are on the top of a whole development pyramid and o�er

optimized implementations of advanced algorithms tested and re�ned formerly in more


exible (and thus less e�cient) symbolic computation environments.

Besides the e�orts of the big CAS to insert the corresponding algorithmic knowledge

(in a more or less e�cient manner) into their own systems recent research (e.g. the projects

PoSSo, Frisco, OpenMath, Math-ML) is directed towards concepts of distributed computing

that allows to combine also directly the advantages of the di�erent special implementations

themselves. Opposite to the aim of general purpose CAS to localize the global power of

problem solving competency on a single computer, these e�orts are directed towards global-

ization of the di�erent speci�c local problem solving competencies into a network reaching

far beyond the possibilities of classical scienti�c communication. They are conducted by

e�orts to develop methods, software, and interfaces that allow easy access to this network

(at least) from the scienti�c community thus leaving the general purpose CAS the role of

advanced desk top calculators with merely an interface to this network. This makes for

them obsolete to pursue ultimate state of the art problem solving facilities but increases the

importance of easy handling, correctness and usefulness of results for small and medium

sized problems when it is inconvenient and probably also to costly to contact the network

for an answer.

Since these e�orts are part of the beginning general changes in the public information

system that will in
uence human life in a very unpredictable way, it's hard to predict
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this development even in a near but not very near future. I don't dare to add my own

predictions beyond the problem description so far.

Second, there are developments connected with next versions, releases, patches, etc.

Only such changes will be reported below. We had the opportunity to work with beta

releases or newly released versions of Macsyma (new beta versions of the modules algsys

and triangsys), Maple (V.4 on a Sun Ultra 1), Mathematica (version 3.0), and MuPAD

(version 1.3 and 1.4.0). We acknowledge the kind support by Macsyma Inc., Wolfram

Research Inc., and also the MuPAD development group supplying us with their development

versions.

Macsyma: A new implementation in the modules algsys and triangsys o�ers also a

RootOf symbol that doesn't expand algebraic numbers by default but those of degree two.

This follows Reduce's philosophy already discussed above. The operator root values al-

lows one to expand such symbols either symbolically (if possible) or numerically. Macsyma

can't yet simplify expressions containing RootOf symbols during resubstitution.

The new package triangsys triangulates the given polynomial system using pseudo

division and characteristic sets as proposed by D. Wang in [22] and [23]. This is a very

interesting approach since it is the only general system solver implementation that com-

pletely avoids Gr�obner basis computations9. Such an approach is often superior compared

to the traditional one for systems that are (almost) complete intersections, see, e.g., the

timings for example 10 compared to the Gr�obner factorizer based solver of Reduce and the

former Macsyma implementation. Moreover the new version of Macsyma now also succeeds

to simplify these square root expressions during resubstitution.

Combined with factorization this improves Macsyma's solve facility. Note that espe-

cially for higher dimensional systems this approach has serious problems to detect embedded

solutions. For components that don't admit a regular parameterization this remains also

a theoretically di�cult question. Below we collected the results of our computations with

the new version of Macsyma.

Example time structure/comments

A4 0.6 14 solutions, 12 of them embedded.

ex. 1 0.3 (8x1)

ex. 2 0.05 (4x4)

ex. 3 2.2 (2x1 1x6)

ex. 4 1.4 (3x1 2x3 3x6)

ex. 6 15.0 (3x1 1x24)

ex. 8 0.2 2 solutions

ex. 9 0.2 3 solutions

ex. 10 12.0 4 solutions

E1 0.1 3 embedded solutions

G1 error: OBJNULL is not a symbol.

Go 8.1 13 sol. with dim=(1x7 1x6 3x5 8x4)

Kri error: out of memory.

Table 5: The behaviour of the new Macsyma solver

9D. Wang developed a package for Maple's share library that uses the same approach, see below.
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Examples 5, 7, G6, Kri, and G7 remain beyond the scope of Macsyma.

Note that in general the results are expressed through rational expressions in the alge-

braic numbers introduced with the RootOf symbols, but neither numerators nor denomi-

nators are reduced with respect to the characteristic polynomials of these numbers.

Maple: We observed only some minor changes in the behaviour of the solver between

version V.3 and V.4. First note that the variable order may change between di�erent

computations of the same system. For example, ex. 3 was resolved with respect to u0

instead of u3 as above. This makes it hard to compare di�erent versions of the solver

in detail. In some cases Maple V.4 returns rational algebraic expressions instead of fully

simpli�ed expressions as in version V.3. This concerns, e.g., ex. 6 and is in the spirit of

the observations in [1]. The rational expression with coe�cients of moderate size expands

with a subsequent call to simplify to a polynomial one with huge coe�cients.

Note that there are two more Maple packages that implement tools for the solution of

polynomial systems. One of them is the package moregroebner by K. Gatermann that

extends the classical Gr�obner algorithm to modules and more 
exible term orderings. The

other one is D. Wang's implementation of the Ritt-Wu characteristic set method in the

package charsets of the shared library algebra. The latter o�ers its own solver csolve

with a performance slightly better than Macsyma. But also in this implementation the

Ritt-Wu method has some problems detecting and removing embedded solutions. Here are

the results of our sample computations in more detail:

example time remarks on the output

A4 1.0 8 embedded solutions as with Macsyma

ex. 1 0.25 correct but unsimpli�ed

ex. 3 2.15 non reduced rational expressions in algebraic numbers

ex. 4 18.1 degree=(9x1 3x6)10

ex. 5 { error: object too large

ex. 6 8.1 degree=(3x1 1x24)

ex. 7 114 degree=(4x1 1x12)

ex. 9 0.3 3 sol.

ex. 10 21.0 4 sol.

E1 0.1 2 embedded solutions

G1 13.9 14 sol. with dim=(1x3 5x2 8x1)

G6 3.4 10 sol. with dim=(1x2 9x1)

Go 72.9 18 sol. with dim=(1x7 3x6 7x5 7x4)

Kri 19.1 19 sol. with dim=(3x9 8x4 8x3)

Table 6: The solver of the charsets package of D. Wang

Mathematica: In late summer 1996 Wolfram Research Inc. launched the version 3.0 of

Mathematica with serious improvements in almost all parts of the CAS. The improvements

concerning the area of polynomial systems solving are mainly related to a new RootOf

philosophy: RootOf (f(x)) now contains additionally a counter to address the di�erent

roots of f(x) individually thus resolving the data type design trouble explained above.

10One of the four solutions of degree 6, see Table 1 b, is a nested tower of degrees 2 and 3 respectively,

that is resolved by Cardano's formula into 6 branches of degree 1.
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Solve[f(x) == 0,x] returns a substitution list with exactly deg(f) items, possibly

with repetitions, that are either of the form Root[f(x),k] if f(x) is irreducible or inde-

composable (i.e. not of the form f(x) = g(h(x)) ) or are simpli�ed by the obvious rules if

f(x) is reducible or of small degree. For example, for poly = x5 � x+ 1

> Solve[poly == 0,x]

now yields

ffx! Root[1�#1 +#15; 1]g; fx! Root[1�#1 +#15; 2]g;
fx! Root[1�#1 +#15; 3]g; fx! Root[1�#1 +#15; 4]g;
fx! Root[1�#1 +#15; 5]gg

The di�erent roots of f(x) are distinguished by their approximate complex values.

There is a great variety of functions to deal with such algebraic numbers as e.g. summation,

parametric di�erentiation, computation of minimal polynomials of derived expressions,

computation of primitive elements, etc.

Together with this new representation of algebraic numbers, the simpli�er was improved

for such objects. This yields for the output of ex. 1 expressions without nested roots

that may be transformed into the simple form returned by Macsyma and Reduce with

another application of the new operator FullSimplify. For ex. 2, Mathematica returns a

list of 16 complicated radical expressions, that are properly simpli�ed symbolically under

resubstitution and also numerically. For ex. 3, the result consists of 8 explicit solutions

where 6 of them di�er only in the component number of the corresponding Root expressions

as expected.

With the new RootOf syntax and the improved algebraic simpli�er Mathematica has

no more problems to substitute RootOf symbols into algebraic expressions and to simplify

them. All resubstitution tasks for the examples, where the solution contains unresolved

RootOf expressions, were executed with full success.

But also the new version couldn't solve examples 4�7 within reasonable time and space.

There is also only little progress solving the polynomial systems of positive dimension. The

system E1 now is solved properly, but with repetitions of the partial solutions fx! 0g and
fy ! 0g. For G1, the system returned after 1796 s. 478 solutions, among them 388 times

the partial solution f�1 = �2 = �4 = �5 = �6 = �7 = 0g. For Gonnet's example, it returns

after 64 s. 9 solutions, two of them being really di�erent. Kri and G7 remain unsolved.

MuPAD: Since version 1.2.9 MuPAD was seriously improved. Version 1.3 already

produced correct answers for most of our zero dimensional examples implementing Gr�obner

factorizer based methods into the solver.

The syntax of solve was extended with a third optional parameter

> sol:=solve(polys,vars,options)

These options may be

� MaxDegree to control the maximum degree of irreducible polynomials whose roots

are given in closed form (if possible). The default is 2 (as in Reduce).

25



� BackSubstitution to enable to perform a back-substitution step on the solution.

The default is FALSE, since this usually leads to coe�cient size explosion.

The new version o�ers also a (direct) numerical solver numSolve1 via

> float(hold(solve)(polys,vars))

and the numerical expansion numSolve2 of symbolic solutions with the (yet undocumented)

function allvalues that (in version 1.4) expands a single solution tuple into a set of

numerical approximations. Hence

> map(sol,op@allvalues)

will expand a set sol of symbolic solutions numerically.

This leads to satisfactory results for all zero dimensional and easy general systems in

our test suite. In table 7 we collected some data of the computations we did with MuPAD

1.4. They report correct output characteristics and reasonable timings.

Example symbSolve numSolve1 numSolve2

time structure time structure time structure

ex. 1 1.95 (8x1) 1.34 8 sol. 0.01 8 sol.

ex. 2 0.53 (4x4) 3.06 16 sol. 0.61 16 sol.

ex. 3 3.02 (2x1 1x6) 3.27 8 sol. 0.37 8 sol.

ex. 4 4.18 (3x1 2x3 3x6) 5.19 27 sol. 1.19 27 sol.

ex. 5 84.1 (10x1 10x4 1x20) 96.0 70 sol. 5.20 70 sol.

ex. 6 12.3 (3x1 1x24) 31.7 27 sol. 19.8 27 sol.

ex. 7 64 437 (4x1 1x12) 64 421 16 sol. 1.49 16 sol.

Table 7: The behaviour of MuPAD 1.4 for zero dimensional

examples without parameters

The timings suggest, that NumSolve1 does probably the same as SymbSolve followed by

NumSolve2. Resubstitution of the numerical values proved the results to be correct, but

resubstitution of the symbolic results failed, if the solution contained RootOf symbols, since

they are not simpli�ed even according to the obvious degree reduction rules.

Also the parametric zero dimensional systems in ex. 8 - 10 were solved successfully. Even

for ex. 10 we got (after 52 s.) four solutions with quite simple square root expressions. Note

that vars is a set, hence the variable order is chosen by the system, so the computations

reallly done by the di�erent systems may vary.

The situation is much worse for systems with in�nitely many solutions. E1, Arn4 and

Kri are solved correctly. For the latter the result (returned after 124 s.) had the same form

(11 branches) as produced by Reduce.

For G1 the system returned after 190 s. 16 solutions with 5. . . 7 entries each. Hence

(since there are 7 variables) one would expect solutions of dimension 0. . . 2 with the missing

variables as parameters. But a more detailed analysis of the output shows, that some of

the solutions contain an entry l4 = l4 thus binding a really free parameter. Four of the

solutions contained even (one branch of) the very suspicious expression

l4 = �
p
30

15

r
15

2
l24:
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Altogether we've got 2 solutions of dimension 2, 13 (including the 4 suspicious ones) of

dimension 1 and another of dimension 0, thus missing at least the 3-dimensional component.

The same applies to G6: We've got (after 24 s.) 11 rationally parametrized solutions,

7 of dimension 1 and 4 of dimension 0. The zero dimensional solutions turned out to be

embedded; the 2-dimensional solution was missing.

Go and G7 remained unsolved after more than 24 h computing time.
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A Some code fragments

Assuming that vars and polys are de�ned as in the text, we collected for the di�erent

CAS the commands to be issued for timing, linear output printing (to analyze the output)

and the code fragments to compute the list of symbolic solutions sol, to compute the list

of numerical solutions numsolve1(polys), to convert sol into a list of approximate solutions

numsolve2(sol), and to check each of them by resubstitution.

Axiom:

)set message time on

numsolve1(polys) == complexSolve(polys,0.0001);

numsolve2(sol) == concat([complexSolve(u,0.0001) for u in sol]);

resubst(sol,polys) == [[subst(u,v) for u in polys] for v in sol];

sol:=solve(polys,vars);

There is no natural way to tell the system to return linear output in human readable form

(only coercion to InputForm returns linear output, but in a Lisp like notation).
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Macsyma:

showtime:true$

display2d:false$

resubst(sol,polys):=

map(lambda([elem],ratsimp(subst(elem,polys))),sol)$

sol:solve(polys,vars);

Maple:

The following code refers to version V.3.

tt:=time();

sol:=[solve(polys,vars)];

time()-tt;

nops(sol);

lprint(sol);

expandsol := proc(sol) map(allvalues,sol,d) end;

numsolve2 := proc(sol) map(evalf,expandsol(sol)) end;

resubst:=proc(sol,polys) map(simplify@subs,sol,polys) end;

Mathematica:

eqn[n List]:=(n==Table[0,fLength[n]g])
time:=res[[1]]

numsolve1[polys ]:=NSolve[eqn[polys],vars]//Timing

numsolve2[sol ]:=sol//N//Timing

resubst[sol ,polys ]:=polys/.sol//Simplify

where

res=Solve[eqn[polys],vars]//Timing

sol=res[[2]]

Linear output may be produced with sol//InputForm.

MuPAD:

Timings and results for symbSolve, numSolve1 and numSolve2 in MuPAD 1.4.

tt:=time((sol:=solve(polys,vars))); sol;

tt:=time((sol1:=numsolve1(polys,vars))); nops(sol1);

tt:=time((sol2:=map(sol,op@allvalues))); nops(sol2);

with
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numsolve1:=proc(polys,vars) begin

float(hold(solve)(polys,vars))

end_proc;

In most cases the resubstitution test may be done with the following procedures:

mysubs:=proc(a,b) begin simplify(subs(b,op(a))) end proc;

resubst:=proc(sol,polys) begin map(sol,mysubs,polys) end proc;

Linear output may be produced setting PRETTY PRINT:=FALSE.

Reduce:

off nat; on time;

procedure numsolve1();

<< on rounded; write solve(polys,vars); off rounded; >>;

procedure numsolve2();

<< on rounded;

write for each x in expand cases(sol) collect sub(x,x);

off rounded; >>;

procedure resubst(sol,polys);

for each u in sol collect sub(u,sub(u,polys));

sol:=solve(polys,vars);

30


