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In Five Faces of Minimality, D. Makinson [12] has surveyed the use of op-
erators mR which|when applied to a set X|form the set of minimal elements
mRX in X with respect to some relation R in non{monotonic logic, belief re-
vision, conditional logic, updating, and conditional deontic logic. By now it
is generally accepted that operators of this type form the basis of a semantic
approach in all those areas.

In this paper we shall abstract from speci�c applications and investigate
the behaviour of minimality operators from an algebraic perspective. Switching
from the intended semantics for a language (e.g., models for �rst order logics,
Kripke frames for modal logics) to algebras is a well understood and rather use-
ful move, see e.g. Henkin et al. [11], Blok [1], and Goldblatt [7]. It enables us to
use techniques from universal algebra to solve problems formulated in terms of
the underlying logic. There is, however, at least one more motivation to inves-
tigate algebras induced by minimality operators: non{monotonic logic as well
as logics involving conditionals are known to behave quite di�erently from stan-
dard logics like classical propositional logic, intuitionistic logic, or modal logics.
This di�erence should be re
ected (and at least partially explained) by means
of the algebraic properties of the algebras induced by the minimality operator.
For example, members of varieties (equationally de�nable classes) of algebras
related to logics mostly have rather well behaved congruences (e.g. equationally
de�nable principal congruences or at least �rst order de�nable congruences, see
e.g. Blok and Pigozzi [2] and [3]). Properties of the congruences often re
ect
interesting properties of the associated logic. If it is true that there is an es-
sential di�erence between non{monotonic and monotonic logics, then we should
expect congruences to show some unusual features which do not appear in, say,
Boolean algebras, Heyting algebras, or Modal algebras.

In order to explain the objective of our investigation more precisely, some
notation is required. Form for any relational structure F = hW;Ri the boolean
algebra with an operator F+ = h2W ;\;�;mR; ;;W i, where

mRX = fy 2 X : (8x 2W )(yRx) x 62 X)g:

Interpreting the elements of W as worlds and the relation R as a preference
relation (or normality relation) between worlds, then|following the basic idea
of Kraus, Lehmann and Magidor [10]|a defeasible inference relation X ` Y

between propositionsX and Y holds i� Y is true in every world that is minimally
abnormal among those satisfying X . That is to say, if mRX � Y , and we have
a reduction of ` to the minimality operator mR. The situation is a bit more
complex in the other areas mentioned above (cf. [12]), but still the minimality
operator is the basic operation to which the inference relation is reduced.

Above we moved from the relational structure F to the algebra F+. By
omitting also the reference to the set W we obtain the variety M of algebras
A = hA;^;:; f; 0; 1i generated by the algebras of the form F

+. M will turn
out to coincide with the class of representable algebras; that is to say, A 2 M
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i� A is isomorphic to a subalgebra of an algebra of the form hW;Ri+ 1. The
members of M are called min{algebras.

In this paper we are going to address the following problems:

� Axiomatize the variety of min{algebras. That is to say, characterize in
algebraic terms the algebras for which f can be interpreted as a minimality
operator.

� Axiomatize the varieties generated by interesting classes of relational struc-
tures, e.g., transitive structures, linear structures, and noetherian struc-
tures.

� Which properties of the relational structure hW;Ri can be described by
means of algebraic properties of hW;Ri+?

� Develop duality theory for min{algebras and relational structures.

� Investigate the min{algebras from an algebraic point of view. Here we
shall consider only the congruences of min{algebras. They turn out to
be not �rst order de�nable and behave di�erently from known varieties
related to logics.

� Finally we brie
y study splittings of lattices of subvarieties of the variety
of min{algebras. This concept enables us to give rather intuitive axioma-
tizations of various varieties of min{algebras.

We close the introduction with a remark about the relation between modal
algebras and min{algebras. Min{algebras are ordinary Boolean algebras with
an operator. However, from this class of algebras only those with an operator f
validating the equation fx ^ fy = f(x ^ y) have been investigated intensively,
see e.g. [7] and [4]. This equality does not hold for min{algebras. Moreover, the
operator f in min{algebras is not monotonic (i.e., we do not have x � y ) fx �

fy) and it is this property which enables us to model non{monotonic reasoning:
the inference relation ` de�ned by putting x ` y i� fx � y is non{monotonic
i� f is not monotonic.

To keep the paper reasonably short we assume basic knowledge of algebraic
notions and duality between boolean algebras and Stone spaces (or modal alge-
bras and descriptive frames) see e.g. [8] and [7].

1In this paper we consider boolean algebras with the minimality operator. Of course,

it would be of interest to consider algebras with less structure, e.g., distributive lattice or

Heyting algebras with the minimality operator. We decided to take Boolean algebras because

we should like to concentrate on the minimality operator and therefore want the simplest

underlying algebra for the remaining operations.
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1 Axiomatization

We are �rst going to axiomatize the variety of min{algebras and show that it
coincides with the class of representable algebras. To this end we require the
following set of equations Ax:

� (sub) fx � x,

� (dis) f(x _ y) � f(x) _ f(y) and fx ^ fy � f(x _ y),

� (ex) y ^ f(x _ y) � fy.

We shall prove that Ax (together with a set of equations axiomatizing the variety
of Boolean algebras) axiomatizes the varietyM. Observe �rst the easily proved

PROPOSITION 1.1 (Soundness) For all relational structures hW;Ri the alge-

bra hW;Ri+ validates all equations in Ax.

LEMMA 1.2 If A = hA;^;:; f; 0; 1i is a boolean algebra with an operator which

validates all equations in Ax, then the following holds for all b1; : : : ; bn and a in

A:

fb1 ^ : : : ^ fbn ^ a ^ :fa > 0 implies :b1 ^ : : ::bn ^ a > 0:

Proof Suppose that :b1^ : : :^:bn^a = 0. Then a_b1_ : : :_bn = b1_ : : :_bn.
Now we derive

fb1 ^ : : : ^ fbn ^ a ^ :fa � f(b1 _ : : : _ bn) ^ a ^ :fa

= f(b1 _ : : : _ bn _ a) ^ a ^ :fa

� fa ^ :fa

= 0

2

To prove completeness we extend the notion of a relational structure to the
notion of generalized min{structures. This will also be useful in the section on
duality.

A generalized min-structure is a tuple G = hW;R; P i such that hW;Ri is
a structure and P is a set of subsets of W containing W and closed under
intersection, complement, and the operation mR. It follows from Proposition
1.1 that the algebra G+ = hP;\;�;mR; ;;W i is a min{algebra whenever G is a
generalized min{structure. A structure hW;Ri is identi�ed with the generalized
min-structure hW;R; 2W i.

Conversely, de�ne for an algebra A validating all equations in Ax the struc-
ture Amax = hW;R; P i as follows:

� W is the set of all ultra�lters in the boolean reduct of A.
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� uRv i� (8a 2 A)(fa 2 u! a 62 v).

� P = f�(a) : a 2 Ag, where �(a) = fu 2 W : a 2 ug.

Consider now an ultra�lter u 2W such that :fa 2 u, for all a 2 A. Then uRv

for all v 2 W . This follows from the de�nition of R. We have fx � x, for all
x 2 A, and so the following conditions are equivalent (in Amax) for any u 2W :

� uRu,

� :fa 2 u, for all a 2 A

� uRv, for all v 2 W .

Sometimes it will turn out to be useful to omit some of the arrows starting at
a re
exive u. De�ne Amin = hW;S; P i in such way that W and P are de�ned
as before but uSv i� uRv and :(uRu) or u = v and uRv. Certainly S � R and
Amin = Amax whenever there is no re
exive point in Amax.

A dual min-structure is any hW;R0; P i such that S � R0
� R. Observe

mRX = mSX = mR0X;

for any R0 with S � R0
� R and any X � W . In conclusion there exists a

dual min{structure of A which is a generalized min{structure i� all dual min{
structures of A are generalized min{structures. This turns out to be the case:

THEOREM 1.3 For any algebra A validating all equations in Ax any dual min{

structure A+ = hW;R0; P i of A is a generalized min{structure and the mapping

� : A ! (A+)
+ is an isomorphism.

Proof Most parts of the proof are standard, see e.g. Goldblatt [7]. So we only
show �(fa) = mR0�(a), for all a 2 A and leave the rest to the reader. Since
mRX = mR0X whenever R is the relation in Amax and X � W , it su�ces to
show

�fa = mR�a; for all a 2 A:

Let a 2 A. We have

u 2 �fa ) fa 2 u

) a 2 u and (8v)(uRv ! a 62 v)

) u 2 �a and (8v)(uRv ! v 62 �a)

) u 2 mR�a:

For the converse direction assume u 62 �fa. Then fa 62 u. If a 62 u, then
u 62 mR�a. Assume a 2 u. We show that there exists v 2 W with a 2 v and
uRv. To this end we prove the �nite meet property of

F = f:b : fb 2 ug [ fag:
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But suppose there are bi with fbi 2 u (i = 1; : : : ; n) such that :b1^: : :^:bn^a =
0. Then, by Lemma 1.2, fb1 ^ : : :^ fbn ^ a^:fa = 0 which is impossible. Any
ultra�lter v containing F is as required. 2

THEOREM 1.4 (Completeness) Let A = hA;^;:; f; 0; 1i be a boolean algebra

with an operator f . The following conditions are equivalent:

� A validates all equations in Ax.

� there exists hW;Ri such that A is a subalgebra of hW;Ri+.

� A is a min{algebra.

Proof (1) implies (2). Suppose that A j= Ax. Let Amin = hW;R; P i. Then,
by the previous theorem, hW;R; P i+ is isomorphic to A and so A is isomorphic
to a subalgebra of hW;Ri+.

(2) implies (3) is trivial.

(3) implies (1) follows from Proposition 1.1. 2

For a class of algebras X we denote by V(X ) the variety generated by X .
Put V(A) := V(fAg), for any algebra A. For a class of relational structures R
we denote by V(R) the subvariety of M generated by fF+ : F 2 Rg. One of
the most interesting subvarieties ofM is of course the variety generated by the
class of transitive relational structures. Denote this variety by T R. The class of
transitive and linear structures is denoted by L and the class of transitive and
noetherian structures (i.e., structures without in�nite strictly ascending chains)
is denoted by N .

In what follows we require some notation for valuations in an algebra. A
valuation 
 in an algebra A is a homomorphism from the algebra of all terms
(over the signature ^, :, f , 0, 1) into the algebra A. Let G = hW;R; P i be
a generalized min{structure. A mapping from the algebra of terms into P is
called a valuation in G i� it is a valuation in G+. We axiomatize the variety
T R.

THEOREM 1.5 For any min{algebra A the following conditions are equivalent:

� A j= ', where ' = fx � :((� ^ :f�) ^ :f(� ^ :f�)) and � = fy _ x.

� A 2 T R.

Proof We leave it to the reader to check that ' is valid in all duals of transitive
structures. Conversely, we show that Amin is transitive whenever A j= '.
Assume that Amin is not transitive. We �nd ultra�lters u1, u2, and u3 such
that u1Ru2Ru3 but :(u1Ru3). Notice that we took Amin and therefore u1 and
u2 are irre
exive. This means that we �nd a; b 2 A with fa 2 u1 but a 2 u3
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and fb 2 u2. De�ne a valuation 
 in A by putting 
(x) = a and 
(y) = b. We
show


(fx ^ ((� ^ :f�) ^ :f(� ^ :f�))) 2 u1:

Clearly fa 2 u1, fb_ a 2 u1, and :f(fb_ a) 2 u1 since fb_ a 2 u2. It remains
to show

:f((fb _ a) ^ :f(fb _ a)) 2 u1:

To this end it su�ces to show

(fb _ a) ^ :f(fb _ a) 2 u2:

Clearly fb _ a 2 u2. Moreover, fb _ a 2 u3 and so :f(fb _ a) 2 u2. 2

In the proof above it is essential to take Amin since, for example, Amax is mostly
not transitive. We discuss this in more detail and thereby give a partial answer
to the question which properties of hW;Ri can be characterized by means of
algebraic properties of hW;Ri+. For a generalized min{structure G = hW;R; P i

we can always form
Gmax = hW;Rmax; P i;

where Rmax = R [ fhu; vi 2 W �W : uRug, and

Gmin = hW;Rmin; P i;

where Rmin = fhu; ui 2 W �W : uRug [ fhu; vi 2 W �W : uRv;:(uRu)g.
Both Gmin as well as Gmax are generalized min{structures and

G
+ = G

+

max
= G

+

min
:

In other words, the algebraic language is not expressive enough to feel whether
arrows start from a re
exive point or not. It follows, for example, that various
natural classes of relational structures hW;Ri|like the class of transitive struc-
tures and the class of linear structures|cannot be characterized by means of
algebraic conditions for hW;Ri+.

2 Duality

In this section we shall develop some pieces of duality theory for generalized min{
structures and min{algebras. We are mainly interested in the relational duals
of algebraic homomorphisms. Given their characterization standard duality
theory between, say, modal algebras and Kripke{frames (see Goldblatt [7]) is
easily translated into duality results between min{algebras and generalized min{
structures. We leave this to the interested reader. First we characterize the
relational dual of subalgebras.
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DEFINITION 2.1 Suppose that G = hW;R; P i and F = hV; S;Qi are general-

ized min{structures. A mapping g from W onto V is a p-morphism i�

uRminv ) g(u)Smaxg(v);

g(u)Sminv ) 9w uRmaxw & g(w) = v;

X 2 Q) g�1(X) 2 P:

Modulo the di�erence between Rmin and Rmax this is the usual de�nition of p{
morphisms for Kripke{frames. It follows that again the main di�erence between
the modal language and the minimality operator is based upon re
exive points.

THEOREM 2.2 (1) If a min{algebra B is a subalgebra of a min{algebra A then

g : A+ ! B+ de�ned by

g(u) = u \ B; for all ultra�lters u in A;

is a p-morphism from A+ onto B+.

(2) If g is a p{morphism from G onto F , then the mapping g+ : F+
! G

+

de�ned by

g+(X) = g�1(X); for all X 2 F
+ ;

is an embedding of F+ into G+.

Proof (1) Assume that A+ = hW;R; P i and B+ = hV; S;Qi. Suppose uRminv.
We show g(u)Smaxg(v). To this end assume g(u) 2 mS�a. Then g(u) 2 �fa

and so u 2 �fa. Hence fa 2 u and so u 2 mR�a and v 62 �a. This holds for all
a 2 B and so g(u)Smaxg(v).

Now let g(u)Sminv. To construct w s.t. uRmaxw & g(w) = v, it su�ces to
show that the set

f:a : fa 2 ug [ (v \B)

has the �nite meet property. Suppose otherwise. Then

:a1 ^ : : : ^ :an ^ b = 0

for some ai 2 u and b 2 v. Since g(u)Sv, we have :fb 2 u.
Case 1: b 2 u. Then fa1 ^ : : : ^ fan ^ b ^ :fb 6= 0 and we arrive at a

contradiction with Lemma 1.2.
Case 2: b =2 u. Then g(u) 6= v. Since g(u)Sminv, g(u) is irre
exive. So there

is c such that fc 2 u \ B. Then

fc ^ fa1 ^ : : : ^ fan ^ (c _ b) ^ :f(c _ b) 2 u:

So by Lemma 1.2 above,

:c ^ :a1 ^ : : : ^ :an ^ (c _ b) > 0;

in contrast to our assumption.
(2) is easy and left to the reader. 2
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Consider now the duals of homomorphisms.

DEFINITION 2.3 Let F = hW;R; P i be a generalized min{structure. Let V �

W be Rmin{closed, i.e. v 2 V whenever u 2 V , v 2W and uRminv. Then

G = hV;R \ (V � V ); fX \ V : X 2 Pgi

is a generalized min{structure as well and we call it a generated subframe of F .

THEOREM 2.4 (1) If G = hV; S;Qi is a generated subframe of F = hW;R; P i,

then the mapping g de�ned by

g(X) = X \ V; for X 2 P ;

is a homomorphism from F
+ onto G+.

(2) If g is a homomorphism from a min{algebra A onto a min{algebra B,

then g+ de�ned by

g+(u) = g�1(u); u an ultra�lter in B;

is an isomorphism from Bmin onto a generated subframe of Amin.

Proof The proof of (1) is easy and left to the reader. (2) Assume that Amin =
hW;Rmin; P i and Bmin = hV; Smin; Qi. Now let V 0 denote the set of ultra�lters
u in W such that g�1(1) = fb 2 A : g(b) = 1g � u. The claim is shown if (a)
V 0 is Rmin{closed, i.e., if g

�1(1) � u and uRminv, then g�1(1) � v. (b) g+

is an isomorphism from Bmin onto the generated subframe of Amin induced by
V 0. (b) is proved in a straightforward manner. (a) Suppose g�1(1) � u and
uRminv. The claim is trivial for u = v. To prove the claim for u 6= v observe
that we �nd|because uRminv|an a 2 A with fa 2 u. Let g(b) = 1. We are
going to show b 2 v. We have g(f(a_:b)) = g(fa). So g(fa^:f(a_:b)) = 0.

Since fa 2 u, we have :f(a_:b) =2 u. Thus f(a_:b) 2 u and so b 2 v. 2

3 Congruences

In this section we characterize the congruences in min{algebras and prove some
basic properties. In Boolean algebras we have a one{one correspondence be-
tween ideals and congruences, see e.g. [8]. It does not come as a surprise that
the congruences of a min{algebra correspond to ideals of the boolean reducts
which satisfy one more condition.

DEFINITION 3.1 Let A be a min{algebra. A subset I of A is called a min{ideal

i� the following holds:

� 0 2 I,

� if a; b 2 I, then a _ b 2 I,
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� if a 2 I and b � a, then b 2 I,

� if a 2 I and b 2 A, then fb ^ :f(b _ a) 2 I.

In what follows we sometime write a� b for a ^ :b.

THEOREM 3.2 Let A be a min{algebra. Let � be a mapping from the lattice

of congruences of A to the lattice of min-ideals de�ned by

�� = fa : (a; 0) 2 �g:

Then � is a surjective isomorphism. The inverse mapping is given by

��1(I) = f(a; b) : (a� b) _ (b� a) 2 Ig:

Proof Clearly �� is a min-ideal whenever � is a congruence. Conversely,
suppose that I is a min{ideal. We show ��1(I) is a congruence. Modulo some
boolean considerations the essential step is to prove for all a; b 2 A that (a; b) 2
��1(I) implies (fa; fb) 2 ��1(I). To this end assume (a; b) 2 ��1(I). It su�ces
to show fa� fb 2 I . But

fa� fb � (fa ^ :f(a _ (b� a)) _ f(a� b)

can be checked easily using duality. We have f(a� b) 2 I since a� b 2 I . Also

fa ^ :f(a _ (b� a)) 2 I since b� a 2 I and I is a min{ideal. 2

This characterization of congruences by means of min{ideals is rather conve-
nient. However, congruences in min{algebras do not behave as well has con-
gruences in standard varieties corresponding to logics. The main reason is that
principal ones are not �rst order de�nable even for the variety T R. For a min{
algebra A and an element b of A we denote by hbi the min{ideal generated by b.
(This corresponds to the congruence generated by (b; 0)). We write A j= a 2 hbi

if a 2 hbi.

THEOREM 3.3 There does not exist a �rst order formula �(x; y) such that for

all A 2 T R and all a; b 2 A

A j= �(a; b), A j= a 2 hbi:

Proof Assume that there exists a formula �(x; y) which de�nes principal con-
gruences. Let

An = hf0; 1; : : : ; ng; <i+;

for n 2 !. Then An j= 1 2 hf1i, as is easily checked. So An j= �(1; f1), for
n 2 !. Take a non{principal ultra�lter U in 2! and form the ultraproduct

A =
Y

U

hAn : n 2 !i:
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We have A j= �(1; f1). But notice that the set

fc �
_
hfa : a 2 Xi : X � A �nite g

is a min{ideal in A containing f1 which does not contain 1. This can be checked
by using well{known properties of ultraproducts, see e.g. [5]. Thus A 6j= 1 2

hf1i and we have a contradiction. 2

We actually proved a stronger result. The algebras An are in V(N \ L). Thus
even for this variety the principal congruences are not �rst order de�nable.

The sequence An is of interest also for another reason: notice �rstly that it
is easy to show that

V(fAn : n 2 !g) = V(L \N ):

De�ne hW;R; P i by putting:

� W = ! [ f1g.

� uRv if u; v 2 ! and u > v or u =1.

� X 2 P i� X is �nite and 1 62 X or X is co�nite and 1 2 X .

We have hW;R; P i+ 2 V(L \ N ) and so hW;Rmin; P i
+
2 V(L \ N ). f1g is

Rmin{closed. By duality, Theorem 2.4, hf1g; h1;1ii+ 2 V(L \ N ). That is
to say, the dual of the re
exive point is in the variety generated by the class of
duals of structures in N \ L. It follows that the classes N and L \ N cannot
be characterized by means of algebraic properties of min{algebras. (Recall that
both classes can be characterized by means of algebraic properties of modal
algebras, cf. [4]).

We close this section with a remark about subdirectly irreducible (s.i.) min{
algebras. Recall that an algebra A is s.i. i� there exists a smallest non-trivial
congruence � in A. For modal algebras there is a convenient characterization
of �nite s.i. algebras by means of their duals. For a �nite structure hW;Ri we
call r 2 W a root of hW;Ri if rR�u, for any u 2 W . Here R� is the transitive
and re
exive closure of R. hW;Ri is rooted i� it has a root. A modal algebra
A is s.i. i� its dual has a root, see e.g. [4]. In the case of min{algebras we have
to take care of re
exive points again:

THEOREM 3.4 Let A be a �nite min{algebra. The following conditions are

equivalent:

� A is subdirectly irreducible.

� Amin has a root.

The simple proof is left to the reader.
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4 Splittings

The equation which axiomatizes T R is rather lengthy and certainly not intu-
itive. This turns out to be the case for many interesting subvarieties of M. In
this section we (brie
y) present an alternative geometrical way to characterize
varieties, namely by means of splittings or subframe splittings. We shall not
go into the details but sketch the main ideas. Since the varieties of interest
are contained in T R we restrict the investigation to splittings in the lattice of
subvarieties of T R.

DEFINITION 4.1 Let A 2 T R be a �nite and subdirectly irreducible algebra.

We say that A splits T R if there exists a largest variety V � T R such that

A 62 V. The variety V is then denoted by T R=A.

For information about splittings and their use for studying lattices of logics we
refer the reader to [13], [1], [9], and [14].

In contrast to the situation in modal logic not every �nite s.i. algebra splits
T R. Let B = hf0g; fh0; 0igi+. B is s.i. but does not split. For assume that
B splits and let V = T R=B. Then An 2 V for all n 2 !, where the algebras
An are from the proof of Theorem 3.3. But we have shown already that B 2

V(fAn : n 2 !g) and so B 2 V which is a contradiction.
B turns out to be the only �nite s.i. algebra which does not split T R.

To sketch the proof we shall work with generalized min{structures instead of
algebras. We know, by Theorem 3.4, that a �nite min{algebra A is s.i. i� Amin
has a root. Notice also that Amin is actually a relational structure. That is to
say, for Amin = hW;R; P i we have P = 2W . So, in order to study splittings by
�nite s.i. algebras it su�ces to study splitting by algebras hW;Ri+ such that
hW;Rmini has a root.

Consider a �nite structure G = hW;Ri with root 0, take for any u 2 W a
variable xu, and de�ne the following terms:

� t1 =
V
h:fxu : uRui

� t2 =
V
hxu ! :f(xu _ xv) : uRvi

� t3 =
V
hxu ! f(xu _ xv) : :(uRv);:(uRu)i

� t4 =
V
hxu ! :xv : u 6= vi

� t5 =
W
hxu : u 2W i

Put S(G) =
V
hti : 1 � i � 5i and SP (G) = S(G) ^ fx0 ^ f(x0 _ :S(G)).

THEOREM 4.2 Let G = hW;Rmini be a �nite and rooted transitive structure.

Then G+ splits T R i� the root of G is irre
exive (i� W is the irre
exive point

or has at least two points.)

Moreover, if G+ splits T R, then T R=G+ is axiomatized by adding the equa-

tion SP (G) = 0 to the axiomatization of T R.
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Proof Let G have an irre
exive root. The Theorem follows immediately from
the following

Claim. For all A 2 T R: A 6j= SP = 0 i� G+ 2 V(A).
The proof of the direction from right to left is easy: de�ne a valuation 


in G by putting 
(xu) = fug, for all u 2 W . Then 
(S(G)) = 1 and therefore

(SP (G)) = f0g. We have proved G+ 6j= SP (G) = 0. Now suppose G+ 2 V(A).
Then any equation which is valid in A is also valid in G+ and soA 6j= SP (G) = 0.

Conversely, suppose that A 6j= SP (G) = 0. Let A+ = hV; S;Qi. We �nd a
valuation 
 in A+ such that 
(SP (G)) 6= ;. Take w 2 
(SP (G)) and consider

F = hV 0; S \ (V 0

� V 0); fV 0

\X : X 2 Pgi

where V 0 = fw0
2 V : wS�w0

g. F is a generated substructure of A+. Let


�(xu) = 
(xu) \ V
0; for u 2 W:

Clearly 
� is a valuation in F . Moreover, 
�(S(G)) = V 0. De�ne a mapping g
from V 0 onto W by putting

g(w) = u i� w 2 
�(xu):

Using the conjuncts t4 and t5 of S(G) it is readily checked that g is well de�ned
and onto. Using the conjuncts t2, t3, and t4 one can show that g is a p{morphism
from F onto hW;Ri. It follows that hW;Ri is a p{morphic image of a generated
substructure of A+. By duality, Theorem 2.2 and 2.4, G+ is a subalgebra of a

homomorphic image of A, and so G+ 2 V(A). 2

We easily obtain axiomatizations of various subvarieties of T R. For exam-
ple, the variety V(fhW;Ri : 8w9v(wRv)g) coincides with T R=A, where A =
hf0g; ;i+.

However, to axiomatize V(N ) and V(L) another form of splittings is more
useful2. We are alluding to the notion of subframe splittings introduced for
varieties of modal algebras in [6] and [14]: for a �nite structure G = hW;Ri let
S0(G) =

V
hti : 1 � i � 4i and

SP 0(G) = S0(G) ^ fx0 ^ f(x0 _ :S
0(G)):

The only di�erence between S(G) and S0(G) consists in the omission of the
conjunct t5. In other words, from u 2 
(SP 0(G)) it does not follow that w 2S
f
(xu) : u 2 Wg for all w with uS�w. We explain the meaning of SP 0(G)

by means of the notion of a substructure: Consider a generalized min{structure
F = hV; S;Qi and V 0

2 Q. Then the structure

hV 0; S \ (V 0

� V 0); fX \ V 0 : X 2 Qgi

2We note that it is possible to axiomatize the variety V(L) by means of (iterated) splittings,

but that V(N ) is not axiomatizable in this manner.
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is a generalized min{structure as well and we call it a substructure of F . Now one
can easily show that for any �nite transitive G = hW;Rmini with an irre
exive
root and all transitive F = hV; S;Qi the following conditions are equivalent:

� F
+
6j= SP 0(G) = 0,

� there exists a substructure F 0 of F such that G is a p{morphic image of a
generated subframe of F .

The following axiomatizations are easily proved with the help of this observation:

THEOREM 4.3 (1) Let G = hf0; 1g; fh0; 1i; h1; 1igi. Then V(N ) is axiomatized

by adding SP 0(G) = 0 to the axiomatization of T R.

(2) Let F = hf0; 1; 2g; fh0; 1i; h0; 2igi. Then V(L) is axiomatized by adding

SP 0(F) = 0 to the axiomatization of T R.

5 Conclusion

In this paper we have investigated basic properties of algebras induced by min-
imality operators. It turned out that|when compared with standard algebras
related to logics|the resulting min{algebras show some unusual and interest-
ing features. However, from the algebraic perspective we certainly scratched
the surface only and various questions remain. We mention here the following
problems:

� Investigate the lattice of subvarieties of M in more detail. Compare it
with the lattice of modal varieties.

� Characterize the de�nable relational structures. That is to say, classes of
structures of the form fhW;Ri : hW;Ri+ 2 Vg, for some variety V �M.

In this paper we did not apply min{algebras to obtain directly new insight
into non{monotonic logics or conditional logics. However, we believe that the
algebraic perspective should form an interesting tool to understand those logics
and that the results presented here form a good basis to start such an enterprise.
But this claim remains to be justi�ed.
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