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Abstract

The paper considers the standard concept de-
scription language ALC augmented with var-
ious kinds of modal operators which can be
applied to concepts and axioms. The main
aim is to develop methods of proving decid-
ability of the satis�ability problem for this
language and apply them to description log-
ics with most important temporal and epis-
temic operators, thereby obtaining satis�a-
bility checking algorithms for these logics.
We deal with the possible world semantics
under the constant domain assumption and
show that the expanding and varying domain
assumptions are reducible to it. Models with
both �nite and arbitrary constant domains
are investigated. We begin by considering
description logics with only one modal op-
erator and then prove a general transfer the-
orem which makes it possible to lift the ob-
tained results to many systems of polymodal
description logic.

1 INTRODUCTION

Description (or terminological) logics have been de-
veloped and used1 as a formalism for representing
knowledge about static application domains. Having
stemmed from real working systems like KL-ONE and
its successors, they proved to be a successful compro-
mise between expressibility and e�ectiveness.

In a description logic system, the knowledge of an ap-
plication domain is represented in the form of con-
ceptual and assertional axioms. The former introduce

1
See e.g. (Brachman and Schmolze 1985), (Borgida et

al. 1989), (Baader and Hollunder 1991), and (Donini et al.

1996) for more references.

the relevant terminology|complex concepts de�ned
in terms of atomic ones and binary relations (roles)
between objects with the help of certain construc-
tors. And the latter describe facts about some con-
crete objects in the domain in terms of concept and
role instances. Although the existing description lan-
guages provide a wide choice of constructors (see e.g.
Baader et al., 1990, Donini et al., 1996), usually they
are intended to represent only static knowledge and
are not able to express various dynamic aspects such
as time-dependence, beliefs of di�erent agents, obliga-
tions, etc., which are regarded to be important ingre-
dients in modeling intelligent agents.

For example, in every standard description language
we can de�ne a concept \good car" as, say, a car with
an airconditioner:

good car = car ^ 9part:airconditioner: (1)

However, we have no means to represent the subtler
knowledge that only John believes (1) to be the case,
while Mary does not think so:

[John believes](1) ^ :[Mary believes](1):

Nor can we express the fact that (1) holds now but in
future the notion of a good car may change (since, for
instance, all cars will have airconditioners):

(1) ^ heventuallyi:(1):

A way to bridge this gap seems to be quite clear. One
can simply combine a description language with a suit-
able modal language treating belief, temporal, deontic
or some other intensional operators. But one has to
be careful, for such a combination may ruin the bal-
ance between expressibility and e�ectiveness, as it hap-
pened with too powerful pure description languages
(see e.g. Schmidt-Schau�, 1989 or Patel-Schneider,
1989).



There is a number of parameters that determine the
design of a modal extension of a given description lan-
guage.

(I) First, modal operators can be applied to di�er-
ent kinds of well-formed expressions of the description
language.

One can apply them only to conceptual and assertional
axioms thereby forming new axioms of the form:

[John believes](good car =

car ^ 9part:airconditioner);

[Mary believes] heventuallyi (John is rich):

Modal operators can be applied to concepts in order
to form new ones:

[John believes] expensive

(i.e., the concept of all objects John believes to be
expensive) or

human being ^ 9child:[Mary believes]

heventuallyi good student

(i.e., the concept of all human beings with a child
which Mary believes to be eventually a good student).

By allowing applications of modal operators to both
concepts and axioms we obtain expressions of the form

[John believes](good car = [Mary believes] good car)

(i.e., John believes that a car is good if and only if
Mary thinks so).

Finally, one can supplement the options above with
modal operators applicable to roles. For example, us-
ing the temporal operator [always] (in future) and the
role loves, we can form the new role [always] loves
(which is understood as a relation between objects x
and y that holds if and only if x will always love y) to
say

John : 9[always] loves:woman

(i.e., John will always love the very same woman (but
perhaps not only her), which is not the same as John :
[always]9loves:woman).

(II) All these languages are interpreted with the help
of the possible world semantics in which the accessi-
bility relations between worlds treat the modal oper-
ators,2 and the worlds themselves consist of domains

2
E.g. [agent A believes] ' is regarded to be true in a

world w i� ' is true in all the worlds agent A considers to

be possible in w or, in other words, accessible from w via

the relation interpreting agent A's beliefs.

in which the concepts, role names and object names of
the description component are interpreted.

The properties of the modal operators are determined
by the conditions we impose on the corresponding ac-
cessibility relations. For example, by imposing no con-
dition at all we obtain what is known as the minimal
normal modal logic K|although of de�nite theoret-
ical interest, it does not have the properties required
to model operators like [agent A knows], heventuallyi,
etc. Transitivity of the accessibility relation for agent
A's knowledge means what is called the positive intro-
spection (A knows what he knows), Euclideannes cor-
responds to the negative introspection (A knows what
he does not know), re
exivity re
ects that only true
facts are known to A (for more information and further
references consult e.g. Halpern and Moses, 1992). In
the temporal case, depending on the application do-
main we may assume time to be linear and discrete
(i.e., the usual strict ordering of the natural numbers),
or branching, or dense, etc. (see van Benthem, 1996).

(III) Another important parameter is the number of
modal operators we need in our language and, re-
spectively, the number of the corresponding accessi-
bility relations. If we deal with multi-agent epistemic
logic then every agent A gives rise to the operator
[agent A believes]. If we also want to capture the
development of beliefs in time, we should add the cor-
responding temporal operator. Note that certain com-
binations of \harmless"modalities may result in a logic
of extremely high complexity (see e.g. Spaan, 1993).

(IV) When connecting worlds|that is ordinary mod-
els of the pure description language|by accessibility
relations, we are facing the problem of connecting their
objects. Depending on the particular application, we
may assume worlds to have arbitrary domains (the
varying domain assumption), or we may assume that
the domain of a world accessible from a world w con-
tains the domain of w (the expanding domain assump-

tion), or that all the worlds share the same domain
(the constant domain assumption). Consider, for in-
stance, the following axioms:

:[agent A knows](unicorn = ?);

([agent A knows]:unicorn) = >:

The former means that agent A does not know that
unicorns do not exist, while according to the latter, for
every existing object, A knows that it is not a unicorn.
Such a situation can be modeled under the expanding
domain assumption, but these two formulas cannot be
simultaneously satis�ed in a model with constant do-
mains.



(V) Following (Calvanese 1996), one can distinguish
between models with �nite and in�nite domains. In
many applications of pure description logics �nite do-
mains are preferable: after all the real world a knowl-
edge base is talking about is �nite. (For instance, when
the domain consists of employees of a company then
certainly we should assume it to be �nite.) However,
if we are dealing with time and temporal operators,
it is natural to assume that with time passing poten-
tially in�nitely many di�erent objects may appear in
the application domain of the knowledge base. Note
that the �nite domain assumption does not mean that
models are �nite.

(VI) Finally, one should take into account the di�er-
ence between rigid and non-rigid designators. In our
context, the former are the object names interpreted
by the same objects in every world in the model under
consideration, while the latter are those whose inter-
pretation is not �xed. Again the choice between these
depends on the application domain: if the knowledge
base is talking about employees of a company then the
name John Smith should probably denote the same
person no matter what world we consider, while Pres-
ident of the company may refer to di�erent persons in
di�erent worlds. For a more detailed discussion con-
sult e.g. (Fitting 1993) or (Kripke 1980).

The following kinds of description modal logics have
been studied in the literature. Laux (1994) con-
structed a multi-agent logic of belief in which the be-
lief operators apply only to axioms, the accessibility
relations are transitive, serial and Euclidean, domains
are constant and of arbitrary size, and designators are
rigid. Schild (1993) introduced description logics with
temporal operators applicable only to concepts and in-
terpreted in models with linear and branching discrete
unbounded time under the constant domain assump-
tion and rigid designators. Baader and Laux (1995)
consider a language in which modal operators can be
applied to both axioms and concepts; they are inter-
preted in models with arbitrary accessibility relations
under the expanding domain assumption. Baader and
Ohlbach (1995) use modal operators as role construc-
tors, but exclude object names and assertions from the
language.

The languages of Schild (1993) and Laux (1994)
present no serious technical di�culties: the satis�a-
bility problem for both of them is reducible to the
satis�ability problem in the well-known propositional
modal logic (in the former case this was observed by
Schild himself and the latter is treated by Theorem 7
below). On the other hand, the unrestricted use of
modal operators to form new roles may lead to unde-

cidable logics even under very natural conditions for
the other parameters, as was proved by Baader and
Ohlbach (1995).

The language of Baader and Laux (1995) appears to
be su�ciently expressive and yet manageable. How-
ever, it was analyzed only in the abstract case of
K-type modalities. More interesting for applications
are modal operators with explicit temporal or epis-
temic interpretations to which the decision procedure
of Baader and Laux is not extended. Besides, their
technique works only under the expanding domain as-
sumption. In general, the case of constant domains
turns out to be much harder. First, there are descrip-
tion logics lacking the �nite model property under the
constant domain assumption but enjoying it if expand-
ing domains are allowed (see Remark 10 below). And
second, one can actually reduce the case of expanding
or varying domains to that of constant domains (see
Theorem 6).

Baader and Laux (1995) did not consider specially
models with �nite domains. Actually, in their case
there is no need to distinguish between the variants
of �nite and in�nite domains: as will be shown below,
the sets of formulas satis�able in models with arbitrary
accessibility relations are the same no matter which of
the two variants is adopted. However, these sets be-
come di�erent if we consider linear temporal models or
models whose accessibility relations are re
exive and
transitive (see Theorem 9). A similar situation arises
in pure description logic when one extends the expres-
sive power in such a way that the resultant logic does
not have the �nite model property (see e.g. De Gi-
acomo and Lenzerini, 1994). In this case the set of
formulas satis�able in �nite domains does not coin-
cide with the set of formulas satis�able in arbitrary
domains.

The aim of this paper is to develop methods of prov-
ing decidability of the satis�ability problem for the
description language with modal operators and apply
them to most important systems. We will consider
modal description logics with the following parame-
ters.

1. The modal operators can be applied to concepts
and axioms, but not to roles.

2. The language is interpreted in models with the ac-
cessibility relations satisfying most conditions of
the standard nomenclature for the belief and tem-
poral operators (in modal logic they correspond to
the systems K, S5, KD45, S4, S4.3, GL, Gl.3 and
the tense logic of discrete linear unbounded time).

3. We begin by considering description logics with



only one modal operator and then prove a gen-
eral transfer theorem which makes it possible to
lift the obtained results to many systems of poly-
modal description logic.

4. We adopt the constant domain assumption and
show that the varying domain assumption as
well as the expanding domain assumption are re-
ducible to it.

5. Both �nite and arbitrary constant domains are
considered.

6. Designators are assumed to be rigid.

(The standard way of proving decidability in modal
logic by using a variant of the �ltration technique does
not work for the logics under consideration. First, the
�ltration of worlds often con
icts with the constant
domain assumption (which is not the case when ex-
panding domains are allowed). And second, not all
our logics enjoy the �nite model property.)

Although our underlying description language is the
standard ALC, the obtained results can be extended
to languages with more expressive power, for instance,
to ALC enriched with number restrictions or transitive
re
exive closure. The proof of this claim as well as
various other proofs are omitted and can be found in
the full paper.

2 SYNTAX AND SEMANTICS

De�nition 1 (alphabet) The primitive symbols of
the modal concept description language ALCM are:

{ concept names: C0; C1; : : : ;

{ role names: R0; R1; : : : ;

{ object names: a0; a1; : : : ;

{ the booleans (say, ^, :, >), modal operators
30;31; : : : , and the relativized existential quanti�er
9Ri, for every role name Ri.

Other standard logical connectives are de�ned in the
usual way. For instance, C ! D is an abbreviation for
:(C ^ :D), ? for :>, and 2i for :3i:.

De�nition 2 (concept) Concepts are de�ned induc-
tively as follows: all concept names as well as > are
(atomic) concepts, and if C, D are concepts, R is a
role name, and 3i a modal operator in our language
then C ^D, :C, 3iC, 9R:C are concepts.

De�nition 3 (formula) Let C andD be concepts, R
a role name and a, b object names. Then expressions

of the form C = D, aRb, a : C are (atomic) formulas.
If ' and  are formulas then so are3i', :', and '^ .

Note that in the de�nition above we did not impose
any restriction on the form of conceptual and asser-
tional axioms. (Baader and Laux (1995) consider, for
instance, only atomic formulas pre�xed by sequences
of modal operators.) This will have no a�ect on our
decidability results as far as we do not touch on the
complexity of the decision algorithms.

By md('), the modal depth of a formula ', we mean
the length of the longest chain of nested modal oper-
ators in ' (including those in the concepts occurring
in '); 2�m' is the conjunction of all distinct formu-
las which are obtained by pre�xing to ' a sequence
of � m operators 20;21; : : : (in arbitrary order). For
instance,

2
�2' = ' ^ 20' ^21' ^ : : : ^ 2021' ^2120' ^ : : :

Denote by con', rol' and ob' the sets of all concepts,
role names and object names occurring in ', respec-
tively; sub' is the set of all subformulas in '.

We remind the reader that models of a pure modal
language are based on Kripke frames, structures of the
form F = hW;�0;�1; : : : i in which each �i is a binary
(accessibility) relation on the set of worlds W . What
is going on inside the worlds is of no importance. Mod-
els of ALCM are also constructed on Kripke frames;
however, in this case their worlds are models of ALC.

De�nition 4 (model) A model of ALCM based on
a frame F = hW;�0;�1; : : : i is a pair M = hF; Ii in
which I is a function associating with each w 2 W a
structure

I(w) =
D
�I(w); R

I(w)
0

; : : : ; C
I(w)
0

; : : : ; a
I(w)
0

; : : :
E
;

where �I(w) is a non-empty set of objects, the domain

of w, R
I(w)

i are binary relations on �I(w), C
I(w)

i sub-

sets of �I(w), and a
I(w)

i are objects in �I(w) such that

a
I(w)

i = a
I(v)

i , for any v; w 2W .

One can distinguish between three types of models:
those with constant, expanding, and varying domains.
In models with constant domains �I(v) = �I(w), for
all v; w 2 W . In models with expanding domains
�I(v) � �I(w) whenever v�iw, for some i. And mod-
els with varying domains are just arbitrary models.

De�nition 5 (satisfaction) For a modelM = hF; Ii
and a world w in it, the value CI(w) of a concept C
in w and the truth-relation (M; w) j= ' (or simply
w j= ', if M is understood) are de�ned inductively in
the following way:



1. >I(w) = �I(w) and CI(w) = C
I(w)

i , for C = Ci;

2. (C ^D)I(w) = CI(w) \DI(w);

3. (:C)I(w) = �I(w) � CI(w);

4. x 2 (3iC)
I(w) i� 9v �i w x 2 CI(v);

5. x 2 (9Ri:C)
I(w) i� 9y 2 CI(w) xR

I(w)

i y;

6. w j= C = D i� CI(w) = DI(w);

7. w j= a : C i� aI(w) 2 CI(w);

8. w j= aRib i� a
I(w)R

I(w)

i bI(w);

9. w j= 3i' i� 9v �i w v j= ';

10. w j= ' ^  i� w j= ' and w j=  ;

11. w j= :' i� w 6j= '.

A formula ' is satis�able in a class of models M if
there is a model M 2 M and a world w in M such
that w j= '.

In this paper our main concern is to �nd out whether
there exist algorithms for checking satis�ability of for-
mulas in several important classes of models. Other
standard inference problems (concept satis�ability,
subsumption, instance checking, consistency) are re-
ducible to the satis�ability problem. The entailment
problem can also be reduced to it, at least for the
classes of models considered below: this is clear for
the local consequence|� j=M ' i� (M; w) j= � )

(M; w) j= ', for every M 2 M and every world w in
M|in this case � j=M ' i� :(

V
� ! ') is not sat-

is�able in M. For the global consequence|� j=�
M

'
i� M j= � ) M j= ', for every M 2 M|we have
� j=�

M
' i� :(

V
� ^ 2

V
� ! ') is not satis�able in

M when models in M are transitive, and the class
of all models is treated similarly to Theorem 3.57 of
(Chagrov and Zakharyaschev 1997).

With every class C of Kripke frames (the number of ac-
cessibility relations in which corresponds to the num-
ber of modal operators in ALCM) we associate the
classes M(C), Me(C), and Mv(C) of all models of
ALCM based on frames in C and having constant, ex-
panding and varying domains, respectively; Mfin(C)
will denote the class of models based on frames in C
and having constant �nite domains. The set of formu-
las satis�able in a class of models M will be denoted
by SatM.

We will use special names for certain classes of frames
with one accessibility relation. Namely,

� K will stand for the class of all frames (with arbi-
trary accessibility relations),

� GL for the class of transitive frames without in-
�nite ascending chains (in other words, transitive
Noetherian frames),

� GL:3 for the class of transitive Noetherian frames
which are linear (i.e., u� v _ v � u _ u = v),

� S5 will stand for the class of frames with the uni-
versal relations, i.e., u�v for all u and v (this class
is often regarded to be a good model for explicit
knowledge),

� S4 for the class of frames with transitive re
exive
relations (i.e., quasi-ordered frames),

� S4:3 for the class of linear quasi-ordered frames,

� KD45 will stand for the class of transitive, serial
(8u9v u�v) and Euclidean (u�v^u�w! v�w)
frames (this class is often regarded to be a good
model for explicit beliefs that are not necessarily
true), and

� N for the frame hN; <i, where N is the set of nat-
ural numbers.

By Kn (GLn, etc.) we denote the classes of frames with
n arbitrary (respectively, n transitive Noetherian, etc.)
accessibility relations.

Our strategy is to consider �rst the unimodal case
(n = 1) and then lift the obtained results to the poly-
modal one by proving a general transfer theorem for
independent joins of logics.

Let us start, however, with two simple observations.
First, it turns out that the satis�ability problem for
models with expanding and varying domains can be
reduced to the satis�ability problem for models with
constant domains. To show this, we introduce a con-
cept ex the intended meaning of which is to contain
in each world precisely those objects that are assumed
to exist (under the expanding or varying domain as-
sumption) in this world. By relativizing all concepts
and formulas to the concept ex, one can simulate vary-
ing and expanding domains using constant ones.

Theorem 6 If SatM(C) is decidable, C a class of

frames, then SatMe(C) and SatMv(C) are also de-

cidable.

Proof Given a formula ', let ex be a concept name
which does not occur in '. By induction on the con-
struction of a concept C we de�ne its relativization



C #ex:

Ci #ex = Ci ^ ex; Ci a concept name,

(C ^D)#ex = (C #ex) ^ (D#ex);

(:C)#ex = ex ^ :(C #ex);

(9R:C)#ex = ex ^ 9R:(C #ex);

(3iC)#ex = ex ^3i(C #ex):

The relativization of ' is de�ned inductively as follows:

(aRb)#ex = aRb ^ (a : ex) ^ (b : ex);

(a : C)#ex = a : (C #ex);

(C = D)#ex = ((C #ex) = (D#ex));

(:')#ex = :('#ex);

(' ^  )#ex = ('#ex) ^ ( #ex);

(3i')#ex = 3i('#ex):

Suppose now that F = hW;�0; : : : i is a frame and
m = md('). Then ' is satis�able in a model based on
F and having varying domains i� the formula

'0 = '#ex ^ 2�m(:(ex = ?) ^
^

a2ob'

a : ex)

is satis�able in a model based on F and having constant
domains. Indeed, assuming that ' is satis�ed in a
model M = hF; Ii with varying domains and that

I(w) =
D
�I(w); R

I(w)
0

; : : : ; C
I(w)
0

; : : : ; a
I(w)
0

; : : :
E
;

for w 2 W , we construct a model N = hF; Ji with
constant domains by de�ning J(w) as

h
[

w2W

�I(w); R
I(w)
0

; : : : ; C
I(w)
0

; : : : ; exJ(w); a
I(w)
0

; : : : i;

where exJ(w) = �I(w). It is readily checked by in-
duction that for any  2 sub' and any w 2 W ,
(M; w) j=  i� (N; w) j=  #ex. Thus '0 is satis�ed in
N.

Conversely, suppose '0 is satis�ed in a world v in a
model N = hF; Ji with constant domains and that

J(w) =
D
�; R

J(w)

0
; : : : ; C

J(w)

0
; : : : ; exJ(w); a

J(w)

0
; : : :

E
;

for w 2W . Consider the model M = hF; Ii in which

I(w) =
D
ex

J(w); R
I(w)
0

; : : : ; C
I(w)
0

; : : : ; a
J(w)
0

; : : :
E
;

where R
I(w)

i and C
I(w)

i are the restrictions of R
J(w)

i

and C
J(w)

i to ex
J(w), respectively, for every w accessi-

ble from v by � m steps3, and I(w) = J(w) for all the

3
I.e., v �i v1 �j � � ��k vn�1 �l vn for some n � m and

some i; j; : : : ; k; l.

other worlds w in F . Since (N; v) j= 2�m:(ex = ?),
the domains of worlds in M are not empty. One
can show by induction that for every  2 sub',
(N; v) j=  # ex i� (M; v) j=  (here we use the fact,
well-known in modal logic, that the truth-value of ' in
v depends only on the worlds accessible by � m steps
from v).

The case of expanding domains is considered analo-
gously by adding to '0 under 2�m one more conjunct
(ex! 2�1ex) = >. 2

Theorem 6 gives us grounds for restricting attention
only to models with constant domains. So in the re-
maining part of the paper we adopt the constant do-
main assumption.

Our second observation concerns the satis�ability
problem for the setALC�

M
of formulas in ALCM which

contain no concepts of the form 3iC. By extending
the technique of Finger and Gabbay (1992) to modal
description logics in which modal operators apply only
to formulas one can prove the following:

Theorem 7 If the modal logic characterized by a class

of frames C is decidable, then the sets of formulas in

ALC�
M

that are satis�able in the classes M(C) and

Mfin(C) coincide and the satis�ability problem for

them is decidable.

Note also that this restricted language does not feel
any di�erence between constant and non-constant do-
mains.

From now on till Section 6 we will be considering the
concept description language ALCM with only one
modal operator 3 (and its dual 2).

3 LOGICS WITHOUT THE FINITE

MODEL PROPERTY

In pure modal logic, the classes of frames introduced in
Section 2 determine decidable logics, which is usually
established by proving their �nite model property (see
e.g. Chagrov and Zakharyaschev, 1997). However,
this way of proving decidability does not go through
for all corresponding modal description logics.

De�nition 8 (FMP) Say that the set SatM(C), C
a class of frames, has the �nite model property (FMP,
for short) if every formula in SatM(C) is satis�able
in a �nite model in M(C). SatM(C) has the bounded
FMP (BMP, for short) if there is an e�ective function
f : N 7! N such that every formula ' in SatM(C) is
satis�able in a model from M(C) with at most f(j'j)



worlds and objects, j'j the length (say, the number of
symbols) of '.

It should be clear that if SatM(C) has BMP and the
set of �nite frames in C is recursive then there ia an
algorithm deciding whether a given formula is satis-
�able in M(C). If SatM(C) has FMP then clearly
SatM(C) = SatMfin(C). But the converse does not
hold in general as follows from the existence of pure
modal logics without FMP.

Theorem 9 For any class C 2 fS4;S4:3;N ;GL:3g,
SatM(C) % SatMfin(C).

Proof For a formula  , let 2+ =  ^ 2 and let
'1 be the conjunction of the following formulas:

a : C; 2+((C ! 2C) = >);

2
+(9R::C = >); 2+((:C ! 3C) = >):

One can readily check that '1 is satis�ed in the models
hhN; <i ; Ii and hhN;�i ; Ii in which, for every n 2 N,

I(n) = hN; Rn ; Cn; ani ;

where Rn = N � N, Cn = f0; : : : ; ng, an = 0. It is
not hard to see, however, that '1 cannot be satis�ed
in any model based on hN; <i or on a frame in S4 and
having a �nite domain. It follows that SatM(C) %
SatMfin(C), for C 2 fS4;S4:3;Ng.

Now take '2 to be the conjunction of the following
three formulas:

3(C ^ :3C) = >; 2((C ! 9R::C) = >);

2((C ! :9R:3C) = >):

It is readily checked that '2 is true at the root of the
model hhW;�i ; Ii in which W = f0; 1; : : : ; !g, i� j i�
i > j, for i; j 2 W (so the frame hW;�i is transitive,
linear and Noetherian), and for every n 2W ,

I(n) =
D
N; RI(n) ; CI(n)

E
;

where CI(n) = fng, for n < !, CI(!) = ;, and
0RI(n)1RI(n)2RI(n) : : : . However, '2 is not satis�able
in any transitive linear Noetherian model with a �nite
domain. 2

Remark 10 It is of interest to note that (i) '2 is
satis�ed in a non-linear Noetherian model with only
three worlds and two objects (see Theorem 24), (ii)
SatMe(GL:3) has FMP (only two worlds are enough
to satisfy '2 under the expanding domain assump-
tion), and (iii) SatMfin(GL:3) has BMP (see The-
orem 25).

4 DECIDABILITY WITHOUT BMP

Our aim in this section is to present an algorithm for
checking satis�ability in models based on hN; <i. Let
us �x an arbitrary formula '.

De�nition 11 (quasiworld) A quasiworld for ' is a
structure of the form

w = hX;Rw
0
; : : : ; Cw

0
; : : : ; (3D0)

w; : : : ; aw
0
; : : : i ;

where X is a �nite set, Rwi � X � X for every
Ri 2 rol', Cwi � X for every concept name Ci in ',
(3Di)

w � X for every 3Di 2 con', and awi 2 X for
every ai 2 ob'. The value C

w of a concept C 2 con'
in w is computed as in De�nition 5, but with item 4 re-
placed by the following: Cw = (3Di)

w, for C = 3Di.

Now consider a structure

m = hw1; : : : ;wkjwk+1; : : : ;wli ; (2)

in which wi, 1 � i � l, are quasiworlds for ' with
domains Xi. De�ne a function h : N 7! f1; : : : ; lg
by taking h(i) = i for 1 � i � l and h(l + m) =
k + 1 + modl�k(m � 1), for m > 0; that is h returns
the sequence 1; : : : ; k; k + 1; : : : ; l; k + 1; : : : ; l; : : : .

De�nition 12 (run) A run in m is any sequence r =
x1; x2; : : : such that xi 2 Xh(i) and, for every concept
3C 2 con' and every i < !,

(a) xi 2 (3C)wh(i) i� xj 2 C
wh(j) for some j > i.

The ith element of a run r will be denoted by r(i),
the quasiworld wh(i) by w(i) and its domain by X(i)
(thus r(i) 2 X(i)). Any two elements x = r(i) and
y = r(i+ 1) of a run r satisfy the following condition:

83C 2 con' (x 2 (3C)w(i) ,

y 2 Cw(i+1) [ (3C)w(i+1)):

A pair x 2 X(i), y 2 X(i + 1) satisfying it will be
called suitable.

De�nition 13 (quasimodel) A structure m of the
form (2) is a quasimodel for ' if the following condi-
tions hold:

(b) for every a 2 ob', ra = aw(1); aw(2); : : : is a run in
m;

(c) for every i < ! and every x 2 X(i), there is a run
r in m such that r(i) = x.

Example 14 The structure m = h jwi in which

w = hX;Rw; Cw; (3C)w; (3:C)w; awi ;



where X = fx; y; zg, Rw = X � X , Cw = fxg,
(3C)w = X , (3:C)w = fzg, and aw = x is a quasi-
model for the formula '1 constructed in the proof of
Theorem 9. The sequences

r1 = x; x; x; x; x; : : : ; r2 = y; x; x; x; x; : : : ;

r3 = z; y; x; x; x; : : : ; r4 = z; z; y; x; x; : : :

are runs in m, while r = z; z; z; z; z; : : : is not a run
because z 2 (3C)m(1) but z =2 Cm(i) for any i < !.

It is worth noting that given a structure of the form
(2), we can e�ectively decide whether it is a quasi-
model for '. For we have the following:

Lemma 15 A structure hw1; : : : ;wkjwk+1; : : : ;wli,

in which all wi are quasiworlds for ', is a quasimodel

for ' i�

(i) for every i � l and every y 2 X(i+ 1) there exists

x 2 X(i) such that the pair x, y is suitable; in partic-

ular, for any a 2 ob', every pair of adjacent elements

in the sequence aw(1); : : : ; aw(l+1) is suitable;

(ii) for every i � l and every x0 2 X(i) there is

n � k + jcon'j � (l � k) � jXk+1j � : : : � jXlj

and there are objects xj 2 X(i+ j), for j = 1; : : : ; n,
such that

83C 2 con' (x0 2 (3C)w(i) )

9m 2 f1; : : : ; ng xi+m 2 Cw(i+m)); (3)

with every pair xj , xj+1, for 0 � j < n, being suitable;
in particular, for every a 2 ob' and every i � l,

83C 2 con' (aw(i) 2 (3C)w(i) )

9m � l � k aw(i+m) 2 Cw(i+m)):

Proof (() To construct a run through xm 2 X(m),
m < !, we �rst take objects xi 2 X(i), for i < m, such
that every pair of adjacent elements in the sequence
x1; : : : ; xm is suitable|this can be done by (i). Then
using (ii) we select a sequence xm; : : : ; xm+n such that
every pair of adjacent elements in it is suitable and
xm 2 (3C)w(m) only if xm+i 2 C

w(m+i) for some i �
n. After that we select by (ii) such a sequence starting
from xm+n 2 X(m+ n), and so on. It is readily seen
that the resulting sequence x1; : : : ; xm; : : : ; xm+n; : : :
is a run in m.

()) That (i) holds follows immediately from (b), (c)
and the de�nition of a run. To prove (ii), notice �rst
that since some run in m comes through x0 2 X(i),

there is a sequence xj 2 X(i+ j), j = 1; : : : ; n, satisfy-
ing (3) and containing only suitable pairs xj , xj+1. So
the problem is to bound n by the constant mentioned
in the formulation of the lemma. And this can be done
by deleting certain redundant segments from the se-
quence x0; : : : ; xn using the obvious fact that to reach
xj from xi, k+1 � i < j � n, (via suitable pairs of ob-
jects) one needs not more than (l�k) � jXk+1j � : : : � jXlj

elements. 2

The truth-relation w(i) j=  in a quasimodel m is com-
puted in the same way as in De�nition 5, but with item
9 replaced by the following: w(i) j= 3 i� w(j) j=  
for some j > i.

Given a quasimodel m for ' of the form (2), we can
construct a standard model M = hhN; <i ; Ii in the
following way. Its domain � consists of all runs in m
and, for every n 2 N,

I(n) =
D
�; R

I(n)

0
; : : : ; C

I(n)

0
; : : : ; ra0 ; : : :

E
;

where rR
I(n)

i r0 i� r(n)R
w(n)

i r0(n), and r 2 C
I(n)

i i�

r(n) 2 C
w(n)

i . By a straightforward induction one can
show that for all C 2 con',  2 sub', n 2 N and r 2
�, we have r 2 CI(n) i� r(n) 2 Cw(n), and n j=  i�
w(n) j=  (condition (a) ensures that r 2 (3D)I(n) i�
r(n) 2 (3D)w(n) and condition (c) guarantees that r 2
(9Ri:D)

I(n) i� r(n) 2 (9Ri:D)
w(n)). Thus, a formula

' is satis�able in M(N ) whenever ' is satis�able in
some quasimodel for '.

To prove the converse, for a model M = hhN; <i ; Ii
satisfying ' and having a domain �, we construct a
quasimodel representingM modulo '.

De�nition 16 (types) The type of an object x in a
world w of M (relative to ') is the set

tMw (x) = fC 2 con' : x 2 CI(w)g:

The type of w in M (relative to ') is the triple

TM(w) = hftMw (x) : x 2 �g;

f 2 sub' : w j= 'g; fha; ti : tMw (aI(w)); a 2 ob'ii:

We will omit the superscriptM and write simply tw(x)
and T (w) if understood.

Every model contains at most 2jcon'j objects of pair-
wise distinct types in every world and at most

](') = 22
jcon'j

� 2jsub'j � job'j � 2jcon'j

worlds having pairwise distinct types.



With every world i in M we associate the quasiworld

wi =


Xi; R

wi

0
; : : : ; Cwi

0
; : : : ; (3D0)

wi ; : : : ; a0; : : :
�
;

where Xi contains the objects a 2 ob' from �4 and
also one representative z =2 ob' from each class [x]i =
fy 2 � : ti(x) = ti(y)g, if such z exists (so jXij �

[(') = 2jcon'j + job'j), xRwi

j y i� either one of x, y is

not in ob' and x0R
I(i)

j y0 for some x0 2 [x]i, y
0 2 [y]i,

or x; y 2 ob' and xR
I(i)

j y, x 2 Cwi

j i� x 2 C
I(i)

j , and

x 2 (3Dj)
wi i� x 2 (3Dj)

I(i).

Consider the structure m = hw1; : : : ;wkjwk+1; : : : ;wli

in which each wi is the quasiworld associated with the
world i inM, 1 � i � l, k is the minimal number such
that T (k + 1) occurs in�nitely often in the sequence
T (k + 1); T (k + 2); : : : , and l is the minimal number
such that T (k + 1) = T (l + 1) and the following con-
ditions (d) and (e) hold:

(d) 83C 2 con' 8a 2 ob' (a 2 (3C)wk+1 , 9i 2
fk + 2; : : : ; lg a 2 Cwi),

(e) for every xk+1 2 Xk+1 there are xk+i 2 Xk+i,
i = 2; : : : ; l� k, such that every pair xk+j , xk+j+1
is suitable and

83C 2 con' (xk+1 2 (3C)wk+1 ,

9i 2 fk + 2; : : : ; lg xi 2 C
wi):

By Lemma 15, m is a quasimodel for '. Indeed, (i)
follows from the fact that every pair x 2 [y]i, x

0 2

[y]i+1, for y 2 �, is suitable. And to show (ii) it
su�ces to take n = 2l � k � i and the sequence

xi 2 Xi; : : : ; xl 2 Xl; xl+1 2 Xk+1; : : : ; x2l 2 Xl

such that every pair of adjacent elements in
xi; : : : ; xl; xl+1 is suitable and xl+1; : : : ; x2l satis�es
(e). It is easily checked by induction that m satis�es
'.

We show now that by deleting some quasiworlds from
m one can construct a quasimodel satisfying ' and
containing not more than some e�ectively computed
number of quasiworlds.

In the \linear" part w1; : : : ;wk of m we delete all the
quasiworlds wi+1; : : : ;wj such that T (i) = T (j), for
i < j � k. By Lemma 15, the resulting structure is
again a quasimodel satisfying '. Thus we may assume
that T (i) 6= T (j) whenever 1 � i 6= j � k, and so
k � ](').

Let us consider now the \cyclic" part wk+1; : : : ;wl.
For every x 2 Xk+1, �x a sequence sx = xk+2; : : : ; xl

4
Without loss of generality we may assume aI(n) = a.

satisfying (e) (for x = a 2 ob' we take sx =
awk+2 ; : : : ; awl) and put sx(i) = xi, i 2 fk + 2; : : : ; lg.
There are at most [(') sequences sx satisfying (e).
For each of them, say sx, we mark (at most jcon'j)
numbers m; : : : ;m0 in the set fk + 2; : : : ; lg such that
sx(n) 2 Cwn , for some n 2 fm; : : : ;m0g, whenever
x 2 (3C)wk+1 . Let m1 < � � � < mn be all marked
numbers for all x 2 Xk+1. We will keep the quasi-
worlds wk+1;wm1

; : : : ;wmn
in our quasimodel. (Note

that n � jcon'j � [(').) And if for i 2 fk + 2; : : : ; lg �
fm1; : : : ;mng there is j > i such that T (i) = T (j) and

fi; i+ 1; : : : ; j � 1g \ fk + 1;m1; : : : ;mng = ;

then we delete all the quasiworlds wi; : : : ;wj�1 from
m. The number of the remaining quasiworlds in the
\cyclic" part does not exceed jcon'j � [(') � ]('). Us-
ing Lemma 15 one can readily see that the resulting
structure is a quasimodel satisfying '.

Thus a formula ' is satis�able in M(N ) i� it is sat-
is�able in a quasimodel for ' of some e�ectively com-
putable size. And the latter condition is e�ectively
checked with the help of Lemma 15. Using simi-
lar (though technically more sophisticated) methods
one can construct satis�ability checking algorithms for
M(S4), M(S4:3) and M(GL:3). Thus we obtain

Theorem 17 The satis�ability problem for M(N ),
M(S4), M(S4:3) and M(GL:3) is decidable.

5 PROVING BMP

As we shall see in this section, all the sets SatM(C), for
C 2 fK;KD45;S5;GLg, have BMP. In principle, one
can prove this by �ltrating worlds through some suit-
able sets of formulas and duplicating certain objects
in the �ltrated worlds to comply with the constant do-
main assumption. It turns out, however, that actually
the same result can be achieved by using the method
of quasimodels we started developing above.

By quasimodels in this section we will mean certain
frames of the form

m = hQ;�i (4)

in which Q is a set of quasiworlds for some formula
' and � a binary relation on Q. To give a precise
de�nition we again require a notion of a run in m.

De�nition 18 (run) A run in m = hQ;�i is a set
r which contains precisely one object from the do-
main Xw of each quasiworld w 2 Q|let us denote
this object by r(w)|and, for every r(u) and every
3C 2 con', we have r(u) 2 (3C)u i� there is
r(v) 2 Cv for some v� u.



De�nition 19 (quasimodel) A quasimodel for a
formula ' is a frame m of the form (4) such that

(f) for every a 2 ob', ra = faw : w 2 Qg is a run in
m;

(g) every object in every quasiworld in m belongs to
some run in m.

The truth-relation (m;w) j=  is de�ned similarly to
De�nition 5. Given a quasimodel m = hQ;�i for ',
construct a standard model M = hm; Ii by taking for
each w 2 Q

I(w) =
D
�; R

I(w)
0

; : : : ; C
I(w)
0

; : : : ; a
I(w)
0

; : : :
E
;

where � is the set of all runs in m, rR
I(w)

i r0 i�

r(w)Rwi r
0(w), r 2 C

I(w)

i i� r(w) 2 Cwi , and a
I(w)

i =
rai(w). It is readily checked by induction that for
all C 2 con',  2 sub', w 2 Q and r 2 �, we
have r 2 CI(w) i� r(w) 2 Cw, and (M;w) j=  i�
(m;w) j=  .

SatM(K): It is well known from modal logic (see e.g.
Chagrov and Zakharyaschev, 1997) that every satis�-
able purely modal formula ' can be satis�ed in a �-
nite intransitive tree of depth � md(') and branch-
ing � jsub'j. We remind the reader that a frame
F = hW;�i is called a tree if (i) F is rooted, i.e., there
is w0 2 W (a root of F) such that w0 �

� w for every
w 2W , where �� is the transitive and re
exive closure
of�, and (ii) for every w 2 W , the set fv 2W : v��wg
is �nite and linearly ordered by ��. The depth of a tree
is the length of its longest branch. A tree F = hW;�i
is intransitive if every world v in F, save its root, has
precisely one predecessor, i.e., jfu 2W : u� vgj = 1,
and the root w0 is irre
exive, i.e., :w0�w0 (in fact, all
worlds in an intransitive frame are irre
exive). Using
the standard technique of modal logic one can prove
the following

Lemma 20 Every ' 2 SatM(K) is satis�able in a

model based on an intransitive tree of depth � md(').

Thus, to establish BMP of SatM(K) it remains to
show that trees of �nite branching are enough to sat-
isfy all formulas in SatM(K) and to estimate the de-
gree of branching.

Suppose a formula ' is satis�ed in a modelM = hF; Ii
based on an intransitive tree F = hW;�i of depth �
md(') (but possibly with in�nitely many branches).
As in Section 4, with every world w 2 W we associate
the quasiworld

w = hXw; R
w

0
; : : : ; Cw

0
; : : : ; (3D0)

w; : : : ; aw
0
; : : : i

for '. (The associated quasiworlds will be denoted by
the Gothic letters corresponding to the Roman letters
denoting the worlds in F.) Let m = hQ;�i be the
quasimodel for ' in which Q = fw : w 2Wg and u � v
i� u�v. We are going to select (by induction) a subtree
m
0 = hQ0;�0i of m which is also a quasimodel for ' and

whose degree of branching is � jcon'j � [(') + jsub'j.
The root of m0 is the root of m. Assume now that
we have already selected a quasiworld v for Q0 and
are looking for its successors. Consider an arbitrary
object x 2 Xv and all the concepts 3Di 2 con', for
i = 1; : : : ; n, such that x 2 (3Di)

v. By condition
(g), there is a run r in m containing x and such that
r(ui) 2 D

ui
i for some ui � v; if x = a, a 2 ob', we use

(f) instead of (g). Then we add ui, for i = 1; : : : ; n, to
the quasimodel under construction as successors of v
and in the same manner consider the other objects in
Xv. Also, for every 3 2 sub' such that v j= 3 , we
add to our quasimodel one successor of v in which  is
true. Clearly, the total number of the added successors
does not exceed jcon'j � [(')+ jsub'j. To conclude the
construction, we denote by Q0 the set of all selected
quasiworlds and de�ne �0 to be the restriction of �
to Q. It is matter of routine to check that m0 is a
quasimodel satisfying ' and

jQ0j �

md(')X
n=0

(jcon'j � [(') + jsub'j)n:

As a result we obtain the following

Theorem 21 SatM(K) has BMP and is decidable.

SatM(S5): Let M = hF; Ii be a model based on
a frame F = hW;W �W i and satisfying '. In each
class [w] = fv : T (w) = T (v)g we select [(') distinct
representatives (if the number of worlds in [w] is less
than [(') then we select all of them) and consider the
structure m = hQ;Q�Qi in which Q consists of the
quasiworlds associated with those representatives (so
jQj � ](') � [(')). It is easily seen that m is a quasi-
model satisfying '. Thus we have

Theorem 22 SatM(S5) has BMP and is decidable.

SatM(KD45): A frame in KD45 is a non-degenerate
cluster (i.e., a frame in S5) possibly having one ir-
re
exive predecessor (which in this case is the root of
the frame). So, given a model M based on such a
frame and satisfying ', we build a quasimodel m for
' by taking the quasiworld associated with the root
of M, if any (then it will be the irre
exive root of m),
and the quasimodel for the cluster of M constructed
in precisely the same way as in the case of SatM(S5).
This yields us



Theorem 23 SatM(KD45) has BMP and is decid-

able.

This technique can be also adopted to prove

Theorem 24 SatM(GL) has BMP and is decidable.

We close this section with a decidability result under
the �nite constant domain assumption.

Theorem 25 Let C be any of the following classes of

frames: (i) all transitive frames, (ii) all transitive re-


exive frames, (iii) all transitive linear frames, (iv) all

transitive Noetherian linear frames, (v) any class of

linear quasiorders. Then SatMfin(C) has BMP and

is decidable. In particular decidable is SatMfin(C) for
any C 2 fK;S5;S4;KD45;GL:3;Ng or C � S4:3.

The proof of this result is di�erent from those delivered
above and can be found in the full paper.

6 POLYMODAL DESCRIPTION

LOGICS

In order to extend the results obtained in the previ-
ous section to polymodal description logics, we show
that the decidability of satis�ability is preserved un-
der fusions of frame classes. More precisely, for classes
C1 and C2 of frames of the form hW1;�1; : : : ;�mi and
hW2;�m+1; : : : ;�ni, respectively, the fusion C1
C2 of
C1 and C2 consists of all frames hW;�1 : : : ;�ni such
that hW;�1; : : : ;�mi 2 C1, hW;�m+1; : : : ;�ni 2 C2.
For example, S5n+1 = S5n 
 S51, for any n � 1. By
extending the technique of Kracht and Wolter (1991)
developed for pure modal logics (see also (Fine and
Schurz 1996), (Gabbay 1996), (Wolter 1997)), one can
prove the following:

Theorem 26 For any two classes of frames C1, C2,

(i) if SatM(Ci) is decidable, for i = 1; 2, then

SatM(C1 
 C2) is decidable;

(ii) if SatMfin(Ci) is decidable, for i = 1; 2, then

SatMfin(C1 
 C2) is decidable;

(iii) if SatMfin(Ci) = SatM(Ci), for i = 1; 2, then
SatMfin(C1 
 C2) = SatM(C1 
 C2).

For a proof we refer to the full paper. As a consequence
we obtain

Theorem 27 There exists a satis�ability checking al-

gorithm for each of the following classes of models:

M(Kn), M(KD45n), M(S5n), M(GLn), M(S4n),
where n � 1.

7 CONCLUSION

In this paper we have shown the decidability of the sat-
is�ability problem for most of the standard systems of
epistemic and temporal description logics. It would be
of interest, however, to analyze a number of more com-
plex systems. For instance, in epistemic logic we did
not touch on the common knowledge operator which
is interpreted by the transitive and re
exive closure of
the union of the accessibility relations for the individ-
ual agents. In the temporal case we studied only the
simplest models with the operator \eventually". How-
ever, many applications require more expressive sets of
modal operators (like \Next", \Until", \in the past",
etc.). For those more complex systems �rst decidabil-
ity results were obtained recently by the authors.

This paper provides rather general methods of estab-
lishing decidability of modal description logics. It does
not analyze speci�c systems and the corresponding de-
cision algorithms in detail. But this will certainly be
necessary in order to make modal description logics
applicable. An important task is to develop reason-
ably e�cient algorithms for checking satis�ability and
to determine the complexity of the satis�ability prob-
lem.

Our decision algorithms can treat models with vary-
ing, expanding and constant domains. But they are
oriented to rigid designators, and it is not clear how
to extend the algorithms to cover non-rigid ones.

Also we would like to draw attention to some inter-
esting mathematical problems concerning modal de-
scription logics. For instance, what is the connection
between the decidability (or the �nite model property)
of the pure modal logic determined by a class of frames
C and the decidability of SatM(C)? How does the de-
cidability depend on the cardinality of domains?
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