
UNIVERSITÄT LEIPZIG
Institut für Informatik

ISSN 1430-3701

 Institut für Informatik

Report Nr. 9 (1998)

Disk Scheduling for Intermediate
Results of Large Join Queries

in Shared-Disk
Parallel Database Systems

Holger Märtens

Disk Scheduling for Intermediate Results of Large Join
Queries in Shared-Disk Parallel Database Systems

Holger Märtens

University of Leipzig
maertens@informatik.uni-leipzig.de

July 1998

Abstract:
In shared-disk database systems, disk access has to be scheduled
properly to avoid unnecessary contention between processors. The first
part of this report studies the allocation of intermediate results of join
queries (buckets) on disk and derives heuristics to determine the
number of processing nodes and disks to employ. Using an analytical
model, we show that declustering should be applied even for single
buckets to ensure optimal performance.
In the second part, we consider the order of reading the buckets and
demonstrate the necessity of highly dynamic load balancing to prevent
excessive disk contention, especially under skew conditions.

Keywords:
parallel databases, shared-disk systems, hash join, load balancing

1

Our work is funded by the Deutsche Forschungsgemeinschaft (DFG) within the project
“Datenallokation und dynamische Lastbalancierung in Parallelen Datenbanksystemen”.

1 Introduction

Shared-disk (SD) database systems (DBS) offer a great load balancing potential due to the fact
that every processing node (PN) can access any disk at uniform cost. In this report, we will
present some ideas on how to exploit this potential in the context of large join queries, where
large means that the amount of data to be processed does not fit into the aggregate memory of
the system’s processing nodes. Specifically, we will consider different ways of distributing in-
termediate results across the disks involved and demonstrate that the degree of declustering, in
particular, has to be chosen with care. In addition, we study the order of disk access while read-
ing the data back in for the join itself and conclude that highly dynamic scheduling is required
to control disk contention caused by execution skew.

1.1 Preliminary considerations
For the purposes of this report, we will presume as given:
• the number and performance of PNs and disks in the system;
• the size and allocation of the base relations involved in the join;
• the selectivity of the scan and join operators.
We will further assume the following simplified conditions:
• two-way equi-joins;
• even, but not necessarily full declustering of the base relations;
• homogeneous PNs and disks;
• no pipelining between the scan and join operators.1

For ease of presentation, we will first consider only one of the relations involved in the join; an
extension to both relations will follow. Similarly, most of our thoughts will be developed for
single-user mode first and extended to multi-user mode later on.
Let us assume the following scenario: Base relationR is declustered acrossr disks. From these
it is read byn scan nodes, which distribute their output tod disks. These intermediate results are
read and processed bym join nodes. Following the notation of [Ra93], each scan node produces
an output (); each join node expects an input (). The data transfer
is assumed to take place by hashing so that, in general, each scan node must deliver to each join
node a relation fragment (,). However, since we are considering large
queries, the join nodes will not be able to hold their entire input. In order to avoid the multiple
reads required for further fragmentation in aGraceor hybrid hash join[SD89], it is appropriate
to partition the data into a greater number of fragments (then calledbuckets) that do fit into a
PN’s memory.
Since the number of buckets,b, can grow very large (especially in the case of skew, as discussed
later), it may well exceed both the number of nodes and the number of disks present in the sys-
tem. As a consequence, disk contention between processors will occur, and the buckets must be
stored in such a way as to minimize this contention. For this purpose, we introduce the addition-
al parameterv, denoting the degree of declustering for every single bucket. Altogether, we have
five parameters to determine for a simple two-way join query, as shown in table 1. (The declus-
tering of the base relations is assumed to be fixed.)

1.2 Processing model
We assume a two-way join query to be processed in the following simplified manner:

1. Pipelining is possible only if at least one relation can be kept in main memory.

Ri i 1…n= Rj j 1…m=

Rij i 1…n= j 1…m=

2

1. In the scan phase, then scan processors read relationR, producing scan fragments.
(Each node contributes to each bucket.)

2. Since the buckets are to be declustered with a degree ofv, sets of scan fragments(for
the same bucket but from different nodes) are integrated into bucket fragmentsand
stored on disk. If the degree of bucket declustering exceeds the number of scan nodes
(), this integration is really a further partitioning. This case, however, is inefficient, as
shown below.

3. In the join phase, them join nodes process the buckets one by one. Although different PNs
work on different buckets, each node handles just one bucket at a time. A set of buckets pro-
cessed by the same join node is called arun.

Table 2 lists some more characteristic values derived from the parameters in table 1, which will
be important in the remainder of this report. Figure 1 shows an example with some typical set-
tings and demonstrates an assignment of disks to PNs with minimal access conflicts. It also il-
lustrates the calculation of the corresponding coefficients.

2 Allocation of buckets

In this section, we will provide rough estimates of the five parameters listed in table 1. As in
most other studies, we will assume integer proportions between some of those values to simplify
our considerations. This concerns the ratios ofn to d, m to d, v to d, v to n, andb to m. We will
further presumed to be greater than bothn andm, but we make no such statement aboutv. In
reality, the parameters can either be chosen so as to fulfill these conditions, or they can be ap-

Table 1: Tuning parameters for join processing

n number of scan processors

m number of join processors

d number of disks to store intermediate results

b number of buckets for intermediate results

v degree of declustering for buckets

Table 2: Characteristics of join processing

scan fragments (sf) fragments produced by the scan nodes

bucket fragments (bf) fragments stored on disk

degree of unification (du) scan fragments united into a bucket fragment

write contention (wc) scan nodes writing to each disk

write parallelism (wp) disks written to by each scan node

run length (rl) buckets to be processed by each join node

bucket parallelism (bp) bucket fragments processed at the same time

read contention (rc) join nodes reading from each disk at a time

read parallelism (rp) disks read from by each join node at a time

b n⋅

n v⁄
b v⋅

v n>

b n⋅

b v⋅

n v⁄

max n v⁄ 1,()

max d v⁄ d n⁄,()

b m⁄

m v⋅

max m v⋅ d⁄ 1,()

v

3

proximated in a straightforward way. When skew effects are involved, the assumption of integer
proportions may become obsolete. The following calculations are based on bandwidth consid-
erations similar to those presented by Mehta and DeWitt [MD95], but designed for the storage
of intermediate results on disk.

2.1 Number of scan nodes (n)
Given the degree of declusteringr of base relationRand the performance of the system’s disks,
we can easily determine the available read bandwidth. In single-user mode,n can then be se-

scan nodes
join nodes

buckets

bucket fragments

disks

In this example, eight buckets are processed using six scan nodes and four
join nodes. The buckets are declustered across twelve disks with a degree of
three. To minimize access conflicts, each disk is used by just two scan nodes
and one join node. The parameters from tables 1 and 2 are set as follows:

This example corresponds to a read-optimal setting (cf. section 2.5.4).

n 6=

sf 48=

rl 2=

m 4=

bf 24=

bp 12=

d 12=

du 2=

rc 1=

b 8=

wc 2=

rp 3=

v 3=

wp 4=

Figure 1: Example for processing model

4

lected based on the nodes’ processing power such that the disk bandwidth is optimally exploit-
ed. In multi-user mode, the same calculation applies; however, the coefficients of performance
applied for both PNs and disks should be adapted to reflect the current system load. In general,
this will lead to lower values ofn because disks tend to have a higher utilization index than pro-
cessors. (See [Mä98a] for details on scan processing.)

2.2 Number of disks (d)
In the reverse process,d can be determined from the disk bandwidth required to take up all the
output produced by the scan, which can in turn be computed based on the performance indices
mentioned. Since the output rate depends on the selectivityselof the scan, and sinced should
be determined before the query is started2, selmust be estimated in advance. If there are no sta-
tistics to derive such estimates from, a sampling phase prior to the scan itself may be useful. In
general,d will then be determined to be about (assuming that the access times for read
and write operations are approximately equal).
This estimate, however, should be viewed as a lower bound of the true value ofd. This is be-
cause a greater number of disks will enable more join nodes to read the buckets from them, so
thatm can be selected higher in the next step. This may be advisable ifr is very low (meaning
thatR is declustered inappropriately for large queries, which should be rectified for the inter-
mediate results).
In single-user mode,dmay simply be set to the total number of disks in the system because there
are no conflicting queries in the system. There may, however, be contention between the scan
on R and the writing of the buckets. This can be amended either by using disjunct sets of disks
or by allocating large buffers for both operations. In multi-user mode, on the other hand, con-
flicts with other queries will occur, the magnitude of which depends on the system load. This
aspect certainly requires closer examination. For the time being, we consider the above estimate
of d a good common-sense heuristic.

2.3 Number of join nodes (m)
From the number of disks,d, we can again calculate the available read bandwidth as above;
then,m can be determined so as to make use of this bandwidth. As we apply the same perfor-
mance indices, we can expect the ratio ofm andd to match that ofn andr (except for possible
discretization errors). Ifm is computed after the scan has finished, the load situation may have
changed and a different ratio may be achieved.

2.4 Number of buckets (b)
The number of buckets should be at least large enough to make all buckets fit into a single
node’s memory. Leaving skew effects aside, this leads to a rule-of-thumb value of

.

However, such large buckets may still flood the buffers of the PNs and come into conflict with
other queries in multi-user mode;b should be selected higher to prevent this. On the other hand,
it is generally useful to keep the number of buckets as small as possible so as to avoid a large
amount of disk seek times for both writing (during the scan) and reading (during the join) the

2. One might also develop an adaptive algorithm that determinesd at runtime, possibly starting with a low
value and increasing it when a high selectivity is detected. It would then have to schedule further oper-
ation such that the sizes of “old” and “new” fragments are equalized. However, the overhead involved
in this is unclear, and we will not pursue this idea any further.

sel r⋅

b
sel R⋅

memory per node
--=

5

buckets. As a consequence, we suggest to first determine the amount of memory that may be set
aside for a local join and to apply the above formula to that value.
When skew is present, buckets cannot be divided so evenly. In this case,b should be set high
enough to guarantee that the memory limit is met by the largest bucket. Consider the following
pessimistic approximation that we used in [Mä98]: If relationR hasa different values on the
join attribute and the hash function employed can be assumed to be fair, each bucket will con-
tain about different attribute values (forb yet to be chosen). In the worst case, one bucket
will acquire the most frequent values and contain

tuples. (Here,αi is thei-th join attribute value in the order of frequency, and is the fre-
quency ofα.) Then,b should be selected such that this number is just below the memory limit.

Excursus.Since for heavy skew, some buckets may be several times smaller than the largest
one, it has been suggested to employ “bucket tuning” techniques [HLH95]. These try to make
better use of the available memory by uniting small buckets into larger ones. However, bucket
tuning has not been proven to significantly reduce response times because it still has to process
the same amount of data and make the same disk accesses. In fact, the number of compare op-
erations in a hash join may increase because the hash classes are now larger. More importantly,
even if the join on a “tuned” bucket takes no longer than the corresponding series of small joins,
it will require a larger amount of memory because all the data from the small buckets is pro-
cessed at the same time. This will probably be harmful in multi-user mode. Thus, we do not con-
sider bucket tuning advisable. Instead, we suggest processing all local joins on a node
sequentially. Only when memory, processors, and disks are all underutilized, buckets might be
either “tuned” or simply processed in parallel. But this situation should not occur in the first
place if parametersd andv are properly adjusted to provide high read bandwidth for the join
nodes. ❏

2.5 Degree of bucket declustering (v)
This is the most interesting of the five parameters we are discussing, and we will elaborate on
it more extensively than on the others. The choice ofv has significant consequences on the de-
gree of parallelism as well as on the amount of disk contention for both the scan phase and the
join phase. Before discussing different possible settings ofv, we observe that there is a certain
asymmetry between the scan and join operations: While each scan node must write into all
buckets simultaneously, a single join node will access only one bucket (andv disks) at a time.
One corollary of this is that while disk bandwidth depends onv in the join phase, this is not an
issue in the scan phase; all disks will be equally loaded independent ofv, as long as there are at
least as many buckets as there are disks (i. e.). Another conclusion concerns the interpre-
tation of write and read contention:

Excursus.In table 2, we defined write contention by the number of scan nodes simultaneously
writing to the same disk. It is traditional wisdom that this figure is an indication of the amount
of access conflicts. Note, however, that the true nature of such conflicts is in terms of disk read-
write head movement: Assuming that each processor accessing a disk tries to read or write data
contiguously stored in a particular location, the number of nodes working on a disk corresponds
to the number of different positions between which the disk head has to move to fulfill the re-
quests received. If there arek such positions, any request has a probability of to cause
an expensive track seek operation; this probability increases with greater values ofk.

a b⁄
a b⁄

f αi()
i 1=

a b⁄

∑

f α()

b d≥

1 1 k⁄–

6

These assumptions do not hold in the scan phase in our model. Here,k is not determined by the
number of scan nodes; when multiple nodes write to the same disk, they will append their data
to thesamebuckets. The truly relevant parameter is the number of bucket fragments stored on
each disk, which corresponds to the number of seek positions: . Assuming that the
fragments will receive approximately the same number of pages (i. e. no skew) in arbitrary or-
der, the above probability calculation applies. Thus, higher values ofv will increase write con-
tention even if the valuewc used before indicates otherwise.
Strictly speaking, however, the number of nodes accessing a disk is not completely irrelevant;
there are a few restrictions to the arbitrary access order we just assumed:
• A single PN will never write two pages at exactly the same time; it will have to produce at

least one more tuple to fill the next buffer page until it can generate another write request.
• Two pages produced by the same processor within a short time interval will rarely concern

the same bucket (whose buffer page has just been emptied); the node is more likely to write
to other buckets in between.

• In the case of synchronous writing, two requests from the same PN will never compete for
disk access; the processor will wait for the first one to finish before issuing the second.

The first effect will tend to decrease disk contention, while the second one will slightly increase
it; both of them appear to be negligible. Synchronous writing seems unnecessary for intermedi-
ate results that require no security measures such as commit protocols. Thus, we consider the
parameterk an adequate indicator of disk contention in the scan phase.
Note that these observations apply to the scan phase only: In the join phase, the common as-
sumption that each node accesses contiguous data is true, andrc is a realisitic indicator of read
contention (within the current query). ❏

The important conclusion drawn from this excursus is that – contrary to intuition –bothwrite
andread contention are best avoided for low values ofv. A higher degree of bucket declustering
is useful only to support read parallelism in the join phase. The following sections will show the
consequences of some common-sense settings ofv.

2.5.1 No declustering: v = 1

Without declustering, the number of bucket fragments to be written equalsb (or per disk),
and write contention is minimal. Note that this setting is impossible if , because there
would be fewer fragments than disks. It may also be problematic if the file system does not sup-
port concurrent writing to the same file; this case would demand .
In the join phase, read contention is also minimized: Each join node reads from just one disk at
a time, and with , the join nodes can access disjunct disks, assuming good scheduling. In
fact, if d is truly greater thanm, some of the disks will remain idle while the processors suffer
from low read parallelism (rp = 1).
⇒ Without read parallelism, this setting must be considered suboptimal in spite of its minimum

write contention.

2.5.2 Full declustering: v = d

With every single bucket declustered across alld disks, pages for a particular bucket can be
stored on any of them. With this setting, scan nodes can even write to separate files if demanded
by the file system (provided that , which is a reasonable assumption). Write contention,
however, is maximized because we have the highest possible number of bucket fragments.
For the join, read contention is also maximized. It equalsmbecause each node has to access all
d disks to assemble its current bucket. This will probably outweigh the benefits of read paral-
lelism achieved with the broad declustering.
⇒ Despite good read parallelism, this setting is also inadequate due to its high disk contention.

k b v d⁄⋅=

b d⁄
b d<

v n≥

d m≥

d n≥

7

2.5.3 Write-optimal declustering: v = n

Like with full declustering, processors can write to disjunct files if needed; however, the scan
fragments are no longer split up unnecessarily (). Scan nodes can even be assigned sep-
arate disks if this should simplify access management.
During the join, read contention is lower than with full declustering (instead ofm) un-
der the assumption of good scheduling.
⇒ This setting offers the best possible write properties in the scan phase for simple file sys-

tems; in addition, it reduces the number of bucket fragments (rather than) as well
as the amount of read contention in the join phase.

2.5.4 Read-optimal declustering:

In comparison to the case of no declustering, the number of bucket fragments is significantly
increased, leading to write contention in the scan phase. This setting can be supported by simple
file systems only if .
For the join, read contention is still avoided (rc = 1), but read parallelism is increased from 1 to

. This will improve join performance because the available disk bandwidth is fully exploit-
ed.
⇒ This setting provides maximum read parallelism for the join phase like full declustering

does, while avoiding read contention and reducing write contention.

2.5.5 Conclusions

From the above examples, we can see that write contention – as indicated by the number of
bucket fragments instead of parameterwc – can never be completely avoided if there are more
buckets than disks (). However, it can be kept relatively low by reducing the degree of de-
clustering,v. Read contention is also decreased for low values ofv, but it can be avoided com-
pletely for or lower. Since also enables maximum read parallelism, this setting
is ideal for the join phase. Write parallelism, as noted before, is not a problem in any reasonable
case (i. e. for). The development of the major performance indicators is depicted in figure
2. (Note that, due to the different dimensions of values included, the y-axis scale is distorted,
and the shapes of the curves are simplified.)
There are only two possible reasons to divert from a setting of . The first is to reduce
the number of bucket fragments in order to alleviate write contention caused by frequent disk
head movements. To analyze this situation, we have devised an explicit cost function that cap-
tures the disk access times of both query phases, thus weighing the pros and cons of different
settings ofv. Our calculations (which are given in appendix A1 because they are rather lengthy)
show that in most cases, is actually the best setting. The only noteworthy exception is sin-
gle-user mode with a limited number of buckets; in this case, declustering should be avoided
completely ().
The second possible reason to choose a different degree of parallelism is a simple file system
that does not allow concurrent writing. As mentioned before, this case demands a setting of

, so that is required.

2.6 Considering the second relation
So far, we have considered only relationR in our calculations in order to simplify the presenta-
tion. We shall now try to include the second relation,S. The computations ofn, d, andm will
work just as laid out in sections 2.1 to 2.3. However, the degree of declustering they were based
on,r, must be adapted to reflect the declustering ofS, the degree of which we denotes. If Rand
Sreside on disjunct disks,r should be replaced with ; if they are stored on the same disks,
r should be changed to etc.

bf sf=

n m d⁄⋅

b n⋅ b d⋅

v d m⁄=

d m⁄ n≥

d m⁄

b d>

v d m⁄= d m⁄

b d≥

v d m⁄=

d m⁄

v 1=

v n≥ v max d m⁄ n,()=

r s+
max r s,()

8

To determineb, which we now interpret as the number of bucketpairs, the aforementioned heu-
ristics must be applied to theinner relation from which the hash tables for the local joins are
built and which thus decides their memory requirements. In general, the smaller of the two re-
lations will be chosen as the inner one; this may be different in certain skew situations.
Finding an appropriate value ofv is more involved. While the previous rules for determingv
from the parametersn, m, p, andd are still valid,v itself can be interpreted in different ways, for
instance:
1. The buckets of both relations are declustered with a degree ofv, i. e. .
2. The degrees of declustering for buckets fromRandSare selected proportional to their sizes

such that their sum equalsv, i. e. and . Two buck-
ets of the same pair should then reside on different disks.

3. As in 2., with the additional constraint that the buckets ofR andS reside on disjunct disks.
The first alternative seems appropriate for join methods that read theR- andS-buckets of a pair
separately, as in standard hash join algorithms. In this case, both buckets may be stored on the
same disks because there will be no access conflicts between them. Alternatively, it is possible
to calculatevR andvSseparately to reflect the fact that the build and probe phases may proceed
at different rates. Options 2 and 3 are applicable when both buckets in a pair are processed si-
multaneously, e. g. in nested-loop or sort-merge joins (although the latter will require changes
in the scan phase to ensure the sorting). Here, the matching buckets should be located on differ-
ent disks; although they are never accessed atexactlythe same time, the disk read-write head
would oscillate between them if they were stored on the same devices.

3 Scheduling the join phase

Having determined the storage parameters for the buckets, processing the scan and storing the
intermediate results is straightforward. With all scan nodes writing to all buckets, there are no
more optimizations to be performed. In the join phase, proper scheduling is necessary to imple-

read contention (rc)

read parallelism (rp)

number of bucket fragments (bf)

dd / m

1

b

1

m

d

b ⋅ d

v = 1

Figure 2: Development of performance indicators

vR vS v= =

vR vS+ v= vR R⁄ vS S⁄ v R S∪⁄≈ ≈

9

ment the conflict-free execution that is theoretically possible. When all buckets are the same
size and all processing nodes work at the same speed (i. e. no skew), such scheduling is trivial:
Each of themnodes is assigned disks and processes all the buckets stored on them. With
skew, however, things get more complicated. Consider the case in figure 3:

Example.A set of 56 buckets has to be processed by four join nodes. They are stored on four
disks without declustering, so that each node could simply read from one disk3 if there were no

3. We have omitted declustering for clarity of presentation. It could easily be incorporated into the exam-
ple by replacing single disks with sets ofv disks and having each join node read from one such set.
Either way, the illustration implements read-optimal declustering as found favorable in section 2.5.

d m⁄

PN1

PN2

PN3

PN4

D1

D2

D3

D4

disksjoin nodes buckets processed

time

PN1

PN2

PN3

PN4

D1

D2

D3

D4

time

0 5 10

0 5 10

a) simple scheduling

b) smart scheduling

Figure 3: Possibilities of join scheduling

10

skew. But for some reason (such as different bucket sizes or varying processor load), one of the
nodes (PN4) delivers only half the performance and has processed just seven buckets when the
others have finished their shares of 14 each.
With simple scheduling (figure 3a), this will be noticed only towards the end of the join phase.
The three faster nodes can then be assigned parts of the remaining work in order to “help” the
overloaded processor. But since the buckets concerned all reside on the same disk, contention
will occur and the nodes will hinder rather than help each other.
A smarter scheduling method (figure 3b) will monitor the progression of work and soon detect
thatPN4 is lagging. It can then reassign work early and ensure that no more than two nodes ac-
cess a single disk at the same time. This will reduce contention and increase the probability of
“short” disk accesses compared to the previous case. Moreover, the maximum read bandwidth
of diskD4, which was mostly underused with simple scheduling, is now exploited more often.❏

3.1 Cost model
In order to compare the two approaches (which we will termlate scheduling(LS) andearly
scheduling(ES), respectively) for more general parameters, we have to create another cost mod-
el. It is similar to the one used in sections 2.5.5 and A1 in that it is mainly based on the distinc-
tion of long and short disk access times. It will be restricted to single-user mode, though,
because we can no longer assume asynchronous access in the join phase; synchronous process-
ing, however, leads to a complex queuing model that is beyond the scope of this paper. In addi-
tion, we will assume that the parametersd andm have been selected such that the join nodes
will optimally exploit the available disk bandwidth. As a consequence, we can only regard those
types of skew that are caused by varying processor performance; bucket size skew can never be
remedied by multiple nodes reading from the same disks if the latter are already fully loaded.
To simplify our presentation, we will assume without loss of generality that , leading to

.4 Now, we can formulate cost functions for both scheduling methods:

3.1.1 Late scheduling

Let us assume that each PN is assignedp pages of data for processing. One node is slower that
the others by a ratio of and will have processed only pages when the other
have finished their work. The remaining pages have to be processed in a second stage,
i. e. after the others are done. The overall disk access cost is

Here, and denote the cost of a single disk access in the respective stage. In the first stage,
there is no contention because each disk is accessed by just one processor; thus, , repre-
senting a short disk access without any track seek overhead. In the second stage,h nodes coop-
erating in reading the remaining data will actually interfere with each other, making the disk
read-write head jump between tracks:5

It is obvious that the probability of a long disk access () increases with the number of nodes
reading from the disk,h. As a consequence, the final pages should be processed by a sin-
gle (fast) node. This is because one processor can already load the disk to its maximum band-

4. The model can be extended to declustering with in the same way as the example (cf. previous
footnote). The results, however, will be exactly the same.

5. This assumes that there are at leasth independent portions of data (i. e. buckets) left to process.
Towards the end of the join phase,h will have to be reduced.

v 1=
m d=

v 1>

0 l 1< < l p⋅ m 1–
p lp–

TLS p tr⋅ p lp–() t'r .⋅+=

tr t'r
tr ts=

t'r
1
h
--- ts⋅ 1 1

h
---–

 tl .⋅+=

tl
p lp–

11

width; further parallelization will provide no more performance gains but merely increase
contention. (This is also the reason why we did not represent parallelism in the formula, e. g. by
dividing the second part byh. That would have been unrealistic because the disk has to fulfill
all requests sequentially.) Setting leads to , so that, finally,

Note that all disk accesses are short; there is no disk contention at any time because the leftover
pages will be processed by just one node. The price for this is a lost potential of parallelism both
for PNs and for disks (the bandwidth of the overloaded node’s disk is not fully exploited in the
first stage).

3.1.2 Early scheduling

With early scheduling, processing is not split into two separate stages like with late scheduling.
Still, the cost function will consist of two parts for the times when a node works on its own data
only and when it shares a disk with another node. Furthermore, we have to set up two equations
from the viewpoint of a fast node and of the slow node, respectively. Let us begin with a fast
node:

The first part of the formula represents the node processing its own data. It is the same as for
late scheduling, including the fact that due to the exclusive disk access. In the second
part, we can now assume parallel processing because the various nodes will help at different
times. Note thatq now denotes thetotal number of pages processed by the slow node; it does
notequal because the node will work on its data even while it is being helped. Furthermore,
we now have a more specific definition of , knowing that when a fast node helps the slow
one, there will be exactly two processors working on the same disk:

From the viewpoint of the slow node, the cost formula looks like this:

The first part represents the times of cooperation with one of the fast nodes. In the second part,
the slow node works alone on pages; being slower by a factor ofl, the node needs an interval
of per page. The number of pages processed while working alone, , is the difference of
the total,q, and those read while being helped. Assuming that when being helped, the node takes
no longer than per page (this is true for , which is the likeliest case), we get

Putting both definitions of together and solving forq, we find that

with .

Note that in contrast to LS, full parallelism is used all the time, regarding not only the processing
nodes but also the disks. On the other hand, ES requires concurrent disk access that will lead to
increased response times.

h 1= t'r ts=

TLS 2 l–() p ts.⋅ ⋅=

TES p tr⋅ p q–
m 1–
------------- t'r⋅+=

tr ts=

l p⋅
t'r

t'r
1
2
--- ts⋅ 1 1

2
---–

 tl⋅+
ts tl+

2
-------------.= =

TES p q–() t'r⋅ q'
ts

l
---.⋅+=

q'
ts l⁄ q'

t'r l t s t'r⁄≥

q' q
p q– t'r⋅

t'r
---------------------– 2q p–= = .

TES

q p
l 1 z–+

2 z–
-------------------⋅= z

m 2–
m 1–

t'r
ts
---- l⋅ ⋅=

12

3.1.3 Comparison

To find out which scheduling approach is preferable under which circumstances, we have to
compare the values of and . Starting from

,

we can find several equivalent conditions (the somewhat lengthy transformation is presented in
appendix A2):

We can see that ES outperforms LS for a large number of processors, for a truly slow overloaded
node, or for a low ratio of concurrent and exclusive access times. This corresponds to the
common-sense observation that LS will fail when there is a significant share of leftover work
that must be processed sequentially (lowl); conversely, ES will profit from a high degree of par-
allelism (largem) and suffer when concurrent access is expensive (high). To see that the
above condition is realistic, consider the final version of the inequation: Knowing that , we
can state that

.

This means that, for ES to be superior to LS, it is sufficient to know that

.

If this condition is not true for single page requests, it can easily be fulfilled by allocating more
buffer space and reading several pages of data at once, reducing the relative overhead for disk
head positioning. (The access times for the corresponding number of pages must then be sub-
stituted for those of single pages in our formulae.) In fact, such a setting should be applied in
general to speed up processing, and in the case of hash joins, the small buffer overhead will be
negligible compared to the amount of memory required for the hash table itself.

3.2 Analysis
We have seen that in most sensible cases – in particular, for a realistic level of processor per-
formance and with a reasonable buffer allocation policy – ES will outperform LS because the
performance gains from parallel processing outweigh the losses from concurrent disk access.
The option of late scheduling with full parallelism was quickly discarded because it causes ex-
treme disk contention.
While our analytical model is restricted to single-user mode, we can still draw come conclusions
for the multi-user case. We have seen in the calculation for the optimal degree of declustering
(sections 2.5 and A1) that inter-query parallelism will increase the likelihood of track seek de-
lays for any disk access; the resulting performance loss is greater for operations that previously
relied on exclusive access than for those that already suffer from intra-query contention. In the
current model, this means that , now equivalent to , will be increased by a larger factor than

. As a consequence, early scheduling will appear even more favorable than in single-user
mode.
In order to implement ES, a system has to be monitored during query execution, so that the pro-
gression of work can be supervised and the appropriate measures can be takenas soon as pos-
sible. This supports the case for dynamic load balancing we have made earlier [Ra96, Mä98,
Mä98a]. The approach of on-demand scheduling (ODS) [Mä98], which allocates tasks to pro-

TLS TES

TLS TES> ⇔ 2 l–() p ts⋅ ⋅ p ts⋅ p q–
m 1–
------------- t'r⋅+>

m
1 l–

2 ts t'r⁄⋅ l–
--------------------------- 1+> l

2 ts t'r⁄ m 1–()⋅ ⋅ 1–

m 2–
---<

t'r
ts
---- 2 m 1–()⋅

m 2–() l⋅ 1+
---------------------------------.<⇔ ⇔

t'r ts⁄
l 1≤

2 m 1–()⋅
m 2–() l⋅ 1+

--------------------------------- 2 m 1–()⋅
m 2–() 1⋅ 1+

----------------------------------- 2 m 1–()⋅
m 1–

------------------------- 2≥ ≥ ≥

t'r 2 ts⋅≤ ⇔ tl 3 ts⋅≤

tr ts
t'r

13

cessors one at a time according to the current status of processing, appears to be a suitable basis
for an implementation of dynamic disk scheduling as considered in this chapter. Though ODS
does not currently account for the order of disk access, this could easily be incorporated into the
algorithm.

4 Conclusion

In this report, we have investigated various strategies of disk scheduling for intermediate results
of large join queries. To the best of our knowledge, ours is the first report that has studied this
issue in the context of shared-disk systems while including the particular conditions of multi-
user mode. Apart from some general heuristics for the selection of processing nodes, disks, and
buckets, we have reached two important conclusions:
• When join buckets are stored on disk, it is useful in most cases to decluster each bucket

across several disks to facilitate parallel reading during the join itself. The optimal degree of
declustering is such that the join processors can keep all disks busy without introducing
intra-query contention.

• When processor performance fluctuates during the join phase, task reassignment between
nodes should take place early enough to enable full parallelism without excessive disk con-
tention. This requires a dynamic load balancing authority that monitors the progression of
work and takes the appropriate measures.

In the future, we plan to validate these results in simulation studies, using our newly developed
simulation system,SimPaD[MS98]. In particular, we will extend our on-demand scheduling
algorithm that has proven successful in previous studies [Mä98] to incorporate the new findings.

Acknowledgment

The author wishes to thank Dr. Dieter Sosna for his help in clarifying the properties of the cost
function used in appendix A1.

References

[HLH95] K. A. Hua, C. Lee, C. M. Hua:Dynamic Load Balancing in Multicomputer Data-
base Systems Using Partition Tuning. IEEE Transactions on Knowledge and Data
Engineering 7 (6), 1995.

[Mä98] H. Märtens:Skew-Insensitive Join Processing in Shared-Disk Database Systems.
IADT Workshop, Berlin, 1998.

[Mä98a] H. Märtens:Options in Scan Processing for Shared-Disk Parallel Database Sys-
tems. Technical Report, University of Leipzig, 1998.

[MD95] M. Mehta, D. J. DeWitt:Managing Intra-operator Parallelism in Parallel Data-
base Systems. 21st VLDB Conf., Zürich, 1995.

[MS98] H. Märtens, Th. Stöhr:SimPaD – A Generic Simulation System for Parallel Data-
bases. Technical Report, University of Leipzig, in preparation.

[Ra93] E. Rahm:Parallel Query Processing in Shared-Disk Database Systems. HPTS-5
Workshop, Asilomar, 1993.

[Ra96] E. Rahm:Dynamic Load Balancing in Parallel Database Systems. Euro-Par Conf.,
Lyon, 1996.

[SD89] D. A. Schneider, D. J. DeWitt:A Performance Evaluation of Four Parallel Join Al-
gorithms in a Shared-Nothing Multiprocessor Environment. ACM SIGMOD Conf.,
Portland, 1989.

14

A1 Determining the optimal degree of declustering

We construct a cost function for the I/O of the intermediate results, i. e. the buckets. It consists
of writing and reading the buckets in the scan and join phase, respectively:

.

If p denotes the number of pages to be written, and if we assume all the disks to be employed
all the time (no skew), then

,

where is the average time taken for a single write operation. This is estimated as

.

Here, denotes the number of write positions active at the same time. There is a probability
of that the disk read-write head neednotbe moved, leading to a “short” disk access ();
otherwise, a “long” access (), including a track seek operation, will occur. Defining

 as the difference between long and short disk accesses, we can simplify

.

The number of active write positions, , is determined by the number of bucket fragments per
disk plus an adequate number of entry points for concurrent queries in multi-user mode,x. Thus,

.

Note that our formula does not include waiting times caused by write requests not being served
immediately. This is because we assume asynchronous access so that processing can continue
while data is (queuing to be) written. Since we further assume that the disks are not generally
overloaded, our model need only capture the actual disk access times.
For read operations in the join phase, we can only assume disks to be active (each of the
m join nodes reads its current bucket from thev disks across which it is declustered). We have
to note, though, that must not exceedd; otherwise, there would be contention between the
join nodes. This assumption is harmless, however, because we have already limitedv to a max-
imum of in section 2.5.5. Now, we can define

with ,

similar to the scan phase. The number of read positions, however, is much lower now because
we have excluded contention within the current join:

.

Here, we assume the same value ofx as in the scan phase to represent the same degree of inter-
query contention. We can now write down the complete cost formula as a function ofv:

T Tw Tr+=

Tw
p
d
--- tw⋅=

tw

tw
1
kw
------ ts⋅ 1 1

kw
------–

 tl⋅+=

kw
1 kw⁄ ts

tl
t∆ tl ts–=

tw tl

t∆
kw
------–=

kw

kw
b v⋅

d
---------- x+=

m v⋅

m v⋅

d m⁄

Tr
p

m v⋅
----------- tr⋅= tr tl

t∆
kr
----–=

kr 1 x+=

T v()
p
d
--- tl

t∆
b v⋅

d
---------- x+
-------------------–

⋅ p
m v⋅
----------- tl

t∆
1 x+
------------–

 ⋅+=

15

We must now find the minimum of this function within the bounds of . To this
end, we will distinguish a number of cases.

A1.1 Single-user mode
Single-user mode is easily represented in our cost formula by setting the number of disk access
positions for concurrent queries to zero: .T then simplifies to

The properties of this function depend on the relationship of to or, if we rearrange
the terms, of to . If both are equal – in other words: if the number of buckets per join
node corresponds to the ratio of disk seek time and short access time – the function is constant
and all values ofv are equivalent.
If is greater (many buckets), the sum of I/O costs strictly decreases withv, presumably
because the performance gains from parallel reading in the join phase outweigh the losses due
to disk contention in the scan phase. In this case,v should be selected as large as possible, i. e.

. If is less than (few buckets), the opposite applies and write contention
dominates. Now, a small value ofv is appropriate, i. e. .
It is somewhat counter-intuitive that the result of this analysis depends on the number of buck-
ets,b, but not on the actual amount of data,p. This can be interpreted as follows: For a high
number of buckets, there are already a large number of fragments on each disk, leading to a very
low probability of “short” write times (is large, so that becomes small). Thus, increas-
ing further through declustering will do little harm in the scan phase while considerably
speeding up the join phase. With few buckets (and bucket fragments), however, there is still a
significant share of short write operations that will be destroyed by declustering, outweighing
the performance gain during the join (which is the same as in the previous case because it does
not depend onb). In contrast tob, pdoes not influence the number of write positions. It is merely
a constant that can be factored out of the equation.

A1.2 Multi-user mode
In multi-user mode, the cost function cannot be simplified. Still, we will transform it into a more
convenient notation by introducing four new “shorthand” coefficients:

.

Now, we can writeT as

and try do derive some results without having to consider the meaning ofα, β, γ, andδ. We note,
however, that all four parameters are greater than zero in the multi-user case.
Our first observation is thatT is continuous for positive values ofv (which is the range we are
interested in). For , converges to positive infinity, while for , it ap-
proachesδ. In between, it may or may not reach a minimum.

T v()
1
v

p tl⋅
m

p t∆⋅

m mx+
------------------–

 ⋅ 1
bv dx+
------------------ p t∆⋅ ⋅–

p tl⋅
d

-----------.+=

v 1 d m⁄,[]∈

x 0=

T v()
1
v

p tl⋅
m

p t∆⋅

m
------------–

p t∆⋅
b

------------–
 ⋅

p tl⋅
d

-----------+=

T v()
p
v

ts

m

t∆
b
----–

 ⋅
p tl⋅

d
-----------.+=

ts m⁄ t∆ b⁄
b m⁄ t∆ ts⁄

b m⁄

v d m⁄= b m⁄ t∆ ts⁄
v 1=

kw 1 kw⁄
kw

α
p tl⋅
m

p t∆⋅

m mx+
------------------–= β

p t∆⋅
b

------------= γ dx
b
------= δ

p tl⋅
d

-----------=

T v() α
v
--- β

v γ+
-----------– δ+=

v 0→ v 0> T v() v ∞→

16

A1.2.1 The case of

Using the fact that

,

we can rewriteT as

and find that for ,T is strictly decreasing, meaning that a large value ofv will deliver the
best performance; thus, we should set . For interpretation, the condition can be
expanded using the original definitions of the Greek shorthand coefficients:

In the final version we have isolated the number of buckets per join node, , as well as the
amount of inter-query contention,x. It is easily verified that for most sensible parameters (i. e.

and), the condition is true. In other words: Unless we are “almost” in single-
user mode (), or we process just one bucket per join node, we should decluster the buckets
with a degree of .
The interpretation is similar to the single-user case: With a reasonable number of buckets, disk
contention in the scan phase is already so severe that declustering will do no further harm at the
time of writing the buckets, while increasing read performance during the join. This is true even
in multi-user mode where inter-query contention affects both phases.

A1.2.2 The case of

Even though it will rarely apply in practive, let us now consider the case of . We now have
no direct information on the shape ofT, so we have to form its derivative to find a minimum:

Setting and solving forv, we get (after some lengthy calculations we omit here)

.

Knowing that , we find that is negative and does not qualify as a solution. Thus, is
the only sensible result. We know that is a true minimum because is negative for

, positive for , and continuous in between (saving an analysis of the second
derivative). The final question we have to study is how relates to the interval , from
which we have to choosev. If is within this range, it is our solution for the case of . If
it is less than 1, we must set because is strictly increasing for . If is greater
than , we select because is strictly decreasing for .

α β≥

β
v
--- β

v γ+
-----------– vβ γβ vβ–+

v v γ+()
------------------------------- γβ

v v γ+()
-------------------= =

T v() α β–
v

------------- βγ
v v γ+()
------------------- δ+ +=

α β≥
v d m⁄= α β≥

α β≥
p tl⋅
m

p t∆⋅

m mx+
------------------–

p t∆⋅
b

------------≥⇔

α β≥ 1
m
---- tl

t∆
1 x+
------------–

 ⋅
t∆
b
----≥⇔

α β≥ b
m

t∆

tl

t∆
1 x+
------------–

---------------------------≥⇔

b m⁄

b m⁄ 2≥ x 1≥
x 1<

v d m⁄=

α β<
α β<

T v() α
v
--- β

v γ+
-----------– δ+= ⇒ T' v() β

v γ+()2

α
v

2
-----.–=

T' v() 0=

v1
αγ

β α–
------------- 1 β

α
---+

 ⋅= and v2
αγ

β α–
------------- 1 β

α
---–

 ⋅=

β α> v2 v1
v1 T' v()

v 0→ v 0> v ∞→
v1 1 d m⁄,[]

v1 α β<
v 1= T v() v v1> v1

d m⁄ v d m⁄= T v() v v1<

17

Unfortunately, no general statements can be made about the relationship in question. In fact, ex-
amples can be found for all three possibilities (being below, within, or above), al-
beit for some rather unrealistic parameter settings. We now expand the solution of to

and replace some of the absolute parameters with their respective ratios:

Here, is the number of buckets per disk, is the number of disks per join node (and the upper
bound forv), and is the ratio of long disk access times to track seek times. This substitution
leads to the following, slightly simplified formula:

This version is easier to analyze because we can set some strict bounds on the remaining coef-
ficients:

We have evaluated the formula for various parameter settings; the results are shown in figure 4.
We can see that in all cases, there is a very narrow margin of values ofx for which the presumed
optimum, , is within the interval . With any sensible degree of inter-query conten-
tion – in particular, for all cases of – exceeds the upper bound so that the actual degree
of declustering will be set to . For some very small values ofx, is below 1, and declus-
tering is not advisable. This corresponds to “near”-single-user mode with few buckets per join
node (cf. section A1.1).
The interpretation once again follows the same pattern as before: Even with a small number of
buckets, inter-query contention of any practical degree can be expected to interfere with writing
in the scan phase to such an extent that declustering will do no further harm while perceptibly
speeding up the join phase through parallel reading.

according to their definitions;

because otherwise , which would prejudicate declustering;

because otherwise, section A1.2.1 would apply;

because otherwise, section A1.2.1 would apply;

because we are studying multi-user-mode.

v1 1 d m⁄,[]
v1

v1

p tl⋅
m

p t∆⋅

m mx+
------------------–

 dx
b

p t∆⋅
b

p tl⋅
m

p t∆⋅

m mx+
------------------––

-- 1

p t∆⋅
b

p tl⋅
m

p t∆⋅

m mx+
------------------–

-----------------------------------+

⋅=

v1

tl

t∆
1 x+
------------–

 dx⋅

m t∆⋅ b tl
t∆

1 x+
------------–

 ⋅–

-- 1
t∆ m⋅

b tl
t∆

1 x+
------------–

 ⋅
----------------------------------+

⋅=

b' b
m
----= d' d

m
----= t'

tl

t∆
----.=

b' d'
t'

v1

t' 1
1 x+
------------–

 d'x⋅

1 b' t' 1
1 x+
------------–

 ⋅–

-- 1 1

b' t' 1
1 x+
------------–

 ⋅
-----------------------------------+

.⋅=

b' d' t', , 1≥

b' d'≥ d b>

b' 2≥ x 1<⇒

t' 2<

x 0>

v1 1 d m⁄,[]
x 1≥ v1

d m⁄ v1

18

A1.3 Summary
Looking for an optimal degree of declustering, we found that in all practical cases, the “read-
optimal” setting is favorable. The only noteworthy exceptions are for relatively small numbers
of buckets in single-user mode; in this case, declustering should not be applied at all. Cases of
medium declustering are not useful to consider.
The fact that is extremely sensitive to changes inx suggests that it is not a pronounced min-
imum of . Rather, the curve appears to be “almost strictly” decreasing in the sense that the
actual value of the minimum, , is only slightly lower than the limit of for ,δ.
As a consequence, even in the improbable case of a broader-than-optimal declustering, the re-
sulting loss of performance can be considered negligible.

A2 Comparing the response times of late and early scheduling

To find out which scheduling approach is preferable under which circumstances, we have to
compare the values of and . We find that

Figure 4: Development of the optimal degree of declustering

0.0 0.1 0.2
x

0.0

5.0

10.0

v1

Development of v 1 versus x
b’ = 5 d’ = 5 t’ = 1.0...1.1

d’

1

0.0 0.5
x

0.0

5.0

10.0

v1

Development of v 1 versus x
b’ = 3 d’ = 3 t’ = 1.0...1.3

d’

1

0.0 0.5 1.0
x

0.0

5.0

10.0

v1

Development of v 1 versus x
b’ = 2 d’ = 2 t’ = 1.0...1.4

d’

1

0.0 1.0 2.0
x

0.0

5.0

10.0

v1

Development of v 1 versus x
b’ = 1 d’ = 1 t’ = 1.0...1.5

d’ = 1

v1
T v()

T v1() T v() v ∞→

TLS TES

19

.

Using the final two variants, we can solve the inequation for the respective coefficients:

TLS TES> 2 l–() p ts⋅ ⋅ p ts⋅ p q–
m 1–
------------- t'r⋅+>⇔

TLS TES> 1 l–() p ts⋅ ⋅ p q–
m 1–
------------- t'r⋅>⇔

TLS TES> 1 l–
1 q p⁄–
m 1–

t'r
ts
----⋅>⇔

TLS TES> 1 l–

1

l 1
m 2–
m 1–

t'r
ts
---- l⋅ ⋅–+

2
m 2–
m 1–

t'r
ts
---- l⋅ ⋅–

--–

m 1–

t'r
ts
----⋅>⇔

TLS TES> 1 l–

1
l 1+() m 1–() m 2–() t'r ts⁄ l⋅ ⋅–

2 m 1–() m 2–() t'r ts⁄ l⋅ ⋅–
--–

m 1–

t'r
ts
----⋅>⇔

TLS TES> 1 l–

2 m 1–() m 2–() t'r ts⁄ l⋅ ⋅–

2 m 1–() m 2–() t'r ts⁄ l⋅ ⋅–

l 1+() m 1–() m 2–() t'r ts⁄ l⋅ ⋅–

2 m 1–() m 2–() t'r ts⁄ l⋅ ⋅–
--–

m 1–

t'r
ts
----⋅>⇔

TLS TES> 1 l–
2 l 1+()–

2 m 1–() m 2–() t'r ts⁄ l⋅ ⋅–

t'r
ts
----⋅>⇔

TLS TES> 1 l–
1 l–

2 ts t'r⁄ m 1–()⋅ ⋅ m 2–() l⋅–
--->⇔

TLS TES> 2 ts t'r⁄ m 1–()⋅ ⋅ m 2–() l⋅ 1+>⇔ m 1–() l⋅ 1 l–()+=

TLS TES> 2 ts t'r⁄⋅⇔ l
1 l–
m 1–
-------------+>

m
1 l–

2 ts t'r⁄⋅ l–
--------------------------- 1+> l

2 ts t'r⁄ m 1–()⋅ ⋅ 1–

m 2–
---<

t'r
ts
---- 2 m 1–()⋅

m 2–() l⋅ 1+
---------------------------------.<⇔ ⇔

