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Abstract

The SymbolicData project has the following three main
goals: 1. to systematically collect existing symbolic com-
putation benchmark data and to produce tools to extend
and maintain this collection; 2. to design and imple-
ment concepts for trusted benchmarks computations on
the collected data; and 3. to provide tools for data ac-
cess/selection/transformation using di�erent technologies.

SymbolicData has developed from a \grass root initia-
tive" of a small number of people to a stage where it should
be presented to, and evaluated and used by a wider commu-
nity.

In this paper we report about the current state of the
project, i.e., we describe the main design principles and tools
which were developed to realize our goals.

1 Introduction

For di�erent purposes, computer hardware and software is
often tested on certain benchmarks. Although being some-
times controversially discussed, such benchmarks set (at
least) well de�ned environments to compare otherwise in-
comparable technologies, algorithms, and implementations.

Benchmark suites for symbolic computations are not as
well established as for other areas of computer science. This
is probably due to the fact that there are not yet well agreed
upon aims and technologies of such a benchmarking. How-
ever, during the last years e�orts towards systematic bench-
mark collections for symbolic computations were intensi�ed.

Following the trend of the development of Computer Al-
gebra software, we can classify these e�orts roughly into two
categories:

1. General benchmarks which cover almost all areas of
symbolic computation and whose main intend is to
compare general-purpose Computer Algebra systems
(CAS). The famous Wester suite [13, ch.3], is a typ-
ical example of such an e�ort.

2. Special benchmarks which concentrate only on a par-
ticular problem and whose main intend is to compare

�At the time of the submission of this paper, the registra-
tion of this domain was not yet completed. In the mean-time,
a mirror of what is to appear at this domain can be reached at
http://www.informatik.uni-leipzig.de/~graebe/SymbolicData

algorithms and implementations solving this problem.
There are numerous special benchmarks for many par-
ticular problems scattered through the literature. See,
e.g., [1, 2, 4, 8, 11, 12] for benchmarks of polynomial
systems solving or [10, 14] for the polynomial factor-
ization challenge.

For further quali�cation of these e�orts it would be of
great bene�t to unify the di�erent benchmark approaches
and to systematically collect the existing special and general
benchmark data such that they are electronically available
in a more or less uniform way. This would provide the com-
munity with an electronic repository of certi�ed inputs and
results that could be addressed and extended during fur-
ther development. The SymbolicData project is set out to
realize this.

However, the aims mentioned above do not reach far
enough: symbolic computations often lead to voluminous
data as input, output or intermediate results. Therefore,
such a project has not only to collect benchmark data but
also to develop tools to generate, store, manipulate, present
and maintain it.

Consequently, the SymbolicData project has the fol-
lowing three goals:

1. To systematically collect existing symbolic computa-
tion benchmark data and to produce tools with which
this data collection can conveniently be extended and
maintained.

2. To design and implement concepts which facilitate
trusted benchmarks computations on the collected
data.

3. To provide tools that allow data access/selection using
di�erent technologies (ASCII parser, SQL, WWW, etc)
and data conversions into commonly used formats, e.g.,
HTML, SQL data bases, ASCII, LaTeX, etc.

In the �rst development stage of the project we concen-
trated on the general design principles of the tools and the
data collection, thereby trying to achieve a balance between
the necessary exibility/extensibility on the one hand, and
simplicity/practicability on the other.

A �rst application of our tools and concepts was realized
on collections of data from two areas of Computer Algebra:
Polynomial System Solving and Geometry Theorem Prov-
ing.
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Further applications of our tools and concepts to col-
lect data from other areas of symbolic computation are in-
tended. For this, we seek the cooperation of persons and
groups that have related data collections at their disposal
and are willing to spend some e�ort to enter these data into
the SymbolicData data base and provide the respective
add-ons to already existing tools.

The SymbolicData project grew out of the special ses-
sion on benchmarking at the 1998 ISSAC conference in
Rostock which was organized by H. Kredel. Since then,
the project has steadily developed from ideas to imple-
mentations and data collections and back. At the begin-
ning of 1999, the authors joint forces with the symbolic
computation groups of the University of Paris VI (J. C.
Faugere, D. Lazard), of Ecole Polytechnique (J. Marchand,
M. Giusti), and of the University of Saarbr�ucken (M. Dengel,
W. Decker). Furthermore, the project was incooperated into
the benchmarking activities of the Fachgruppe Computer-
algebra of the Deutsche Mathematiker Vereinigung.

In this paper we report about the current state of the
SymbolicData project. Based on the general design of
SymbolicData which is outlined in section 2, we describe
in section 3 how the above mentioned goals were realized.
These concepts are illustrated in section 4 by two examples
of data collections from di�erent areas of Computer Alge-
bra. Section 5 gives an overview of what deliverables the
SymbolicData project has produced so far which is �nally
followed by some concluding remarks in section 6.

2 The Design of SymbolicData

Based on the goals mentioned above and on the observation
that the data to be collected enjoys a lot of structure, we
choose an object-relational data base approach for the re-
alization of SymbolicData. This approach does not only
allow to systematically collect and store data, but also of-
fers concepts to interrelate di�erent data, e.g., problem de-
scriptions, computational results, background information,
citations, and to design modular, object-oriented tools for
data access and manipulations.

For exibility reasons, we do not use (at least at the mo-
ment) one of the various data base programs as main engine
but keep the primary sources in an XML-like ASCII format.
A �le stored in a at, XML-like syntax is well suited for di-
rect editing and viewing, and for retrieving its information
as a record of tag/value pairs combined from the tag name
and the string enclosed between the (consecutive top level)
start/end tags as value. We call such �les sd-�les and their
associated records sd-records and use them as the basic
units to store all information.

Furthermore, we use Perl as the programming language
in which almost all of the tools for accessing and manipu-
lating sd-records are written. Perl with its powerful script-
ing and string manipulation facilities, and its capability to
design and implement modular and object-oriented tools
turned out to be very adequate for this task.

2.1 The structure of the data base

As mentioned above, sd-records (or, records, for short) form
the informational units of the data base and contain, e.g.,
problem descriptions, examples, references to the literature
etc. Similar records share a common structure and are
grouped into tables. Each sd-record must have a Type tag

whose value speci�es the table the record belongs to and a
Key tag which uniquely identi�es the record within its table.

There are two basic kinds of tables: data tables and meta
tables. Data tables are used to actually store the collected
data whereas meta tables are used to specify and de�ne
the syntax and semantics of the tags of data tables. More
precisely, for each known tag of a particular data table, there
is a sd-record in the corresponding meta table which speci�es
a set of attributes of the considered tag. They de�ne a
\data structure" in an object-oriented sense.

Since we store the meta information about data tables
again in the form of sd-records we can use the same tools
to retrieve and manipulate both, data and speci�cations.
Even more importantly, such an approach allows exible,
modular, and independent extension and modi�cation of the
structure of the data base, like adding a new data table type
for a di�erent kind of application, since the meta information
is a part of the data base, and not explicitly �xed in the tools
of SymbolicData.

Tag attributes need to specify

� the type of the tag which determines the syntax of its
value,

� a level of the tag which determines its importance
(level==1 characterizes mandatory tags),

� and a description of the meaning/purpose of the tag.

Further attributes may specify the name of a (Perl) pro-
cedure that semantically validates (e.g., verifying that poly-
nomials are in normal form) or even generates (e.g., deter-
mines the number of variables occurring in a polynomial)
the value of the tag, or de�nes how the tag value has to be
transformed into a di�erent format (e.g., how polynomials
are represented in HTML).

The type concept for tag values we have developed can
loosely be described as follows:

1. It de�nes (mostly by means of regular expressions) a set
of basic tag types, e.g., Text, Integer, Float, URL, Ref
(for references to records in other tables), Polynomial,
BibTeXEntry, etc. These basic tag type speci�cations
are again stored in form of meta sd-records which allows
dynamic type extensions by simply adding a new sd-
record specifying a new basic tag type.

2. It de�nes how lists and hashes can recursively be con-
structed from basic types. To have a list constructor is
necessary to express such concept as \list of (lists of)
polynomials". A hash constructor, which constructs
sets of key/value pairs from the underlying type, is
necessary to express, e.g., one-to-many or many-to-one
relations between records and tags.

Requiring that each tag value is of a certain type has the
advantage that many operations, like syntactic validation,
HTML or SQL conversion, etc., on tag values can be realized
in a generic, \content independent" way.

Interrelations between di�erent tables are speci�ed by
means of the type Ref. A tag value of type Ref (or, reference,
for short) is a hash of key/comment pairs where `key' is the
name of a record, or even a regular expression matching sev-
eral records, in the foreign table and `comment' is any text.
The name of the foreign table is either speci�ed in the tag's
meta sd-�le or inherited from the tag name, if it coincides
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with a valid table name. Interrelations are used to attach
to a record, for example, bibliography entries (from the BIB
table), problem descriptions (from the PROBLEMS table) etc.

Each meta table contains a special sd-record (whose Key
is Meta) with \class attributes", i.e., information that spec-
i�es properties of the entire data table. This may be a de-
scription of the purpose of this data table, names of (Perl)
modules required for processing records of this table, spec-
i�cations of procedures which compare two records of this
table, etc.

All sd-�les are stored in a directory hierarchy, where the
string concatenation of the Type and Key of a record yields
the location of its sd-�le within the directory hierarchy of
the data base. A further sub-classi�cation of the records of
a table can be realized by means of the directory delimiter
\/" in their Key values.

2.2 The SymbolicData Perl tools

The design of the SymbolicData tools has to take into
consideration several circumstances. First, the operations
they have to perform are of very di�erent natures and re-
quirements: they range from the insertion and validation of
a single record, over the initiation, control and evaluation
of benchmark computations on selected records, up to the
transformation of parts or the entire data base into other
representations like HTML or SQL. Second, the usability of
these tools has to be as simple and as exible as possible.
And third, the tools need to be extendible at di�erent levels.

With these circumstances in mind, the SymbolicData
tools are designed to provide

1. a programming environment to be used for indepen-
dent and rapid development of new components and
specialized applications which, on the one hand, allows
a maximum on code reusability and similarity of the
look-and-feel of di�erent components, and on the other
hand, a maximum on exibility and component inde-
pendence.

2. a well-documented, exible, and intuitive standard in-
terface program which can initiate and control most
of the implemented operations in a standardized and
extendible way.

The SymbolicData Perl tools are the main vehicle for
operations on the data base. They are implemented as a
hierarchy of Perl modules which we divide into four cate-
gories:

Basic modules : They implement primitive operations,
like I/O and tag/value access of sd-records.

Action modules : They implement the generic part of ac-
tions like validate, insert, compute, transform, etc. to
be performed with the data base.

Table modules : They implement those parts of actions
that are speci�c for a given table, e.g., how to validate
a bibliography entry.

The symbolicdata program : It provides a standard in-
terface that realizes command-line parsing, initializa-
tion of global variables and required modules, and ex-
ecution of the well de�ned actions inherited from the
command line.

To give the reader a feeling of how these modules
cooperate we describe the main steps executed by the
symbolicdata program. Its synopsis is

symbolicdata [-req file] actions [options] [args]

On start-up, symbolicdata loads all the basic modules,
parses the command-line arguments up to the mandatory ac-
tion argument(s), and loads the global action hash which
speci�es, in a well-de�ned format, all known (or, \regis-
tered") actions and their properties, e.g., the Perl modules
required for the action, a description of the action etc. The
action hash can dynamically be extended at run-time using
the �rst (optional) -req file argument, where file is the
name of a Perl module which is loaded before the actions
are parsed. Next, for each action, the modules listed in the
respective action hash entry are loaded.

Then, symbolicdata initializes the global command-
line hash which stores the recognized command-line op-
tions, their properties (like syntax of the argument, docu-
mentation, etc.) and (default) values. Each loaded module,
including the basic modules, may add general, or action-
speci�c entries to this global command-line hash. This way,
the list of recognized command-line options is dynamically
built up at run-time, and, hence, can independently be ex-
tended by other modules and is kept as small as possible.
Values for command-line options can also be given in so-
called init-�les, which allow convenient editing and storing
of these values.

After the modules are loaded and the command-line hash
is set up, all remaining command-line arguments are parsed,
and their values are stored in the appropriate slots of the
command-line hash.

Finally, symbolicdata calls the speci�ed action(s) in the
order in which they are listed on the command-line: The
�rst action gets the remaining command-line arguments as
input, subsequent actions get the output of their preceding
action as input, unless, of course, an error occurred.

The Perl tools use a hierarchy of hashes as internal data
representation of the data base: the entire data base is a
hash of Type/table pairs, a table is a hash of Key/record
pairs etc. Furthermore, these hashes are implemented as
so-called tied hashes, i.e., the basic hash operations like
creation, value access, iteration, and destruction are over-
loaded. This overloading enables transparent data manipu-
lations on both, the internal sd-record hashes and the exter-
nal (persistent) sd-�les. It also enables automatic loading,
caching and storing of sd-records; read-only access of sd-
records; automatic or explicit conversion of tag values into
strings/lists/hashes, etc1.

To increase the usability of the implemented tools, it is
necessary to provide adequate and up-to-date documenta-
tion of their various features. From our experience, this is
best realized by keeping the documentation and the source
code closely together. Therefore, each module, action, and
command-line option speci�cation also has to provide well-
de�ned hashes or hash entries which describe and illustrate
the provided feature(s). This way, extensive documentation
in various formats, e.g., a short ASCII description of rele-
vant command-line options, or a detailed HTML table of all
actions and their respective command-line options together
with relevant examples, can be generated directly from the
source code.

1Most of these features can be controlled by command-line argu-
ments.
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3 Realizing the Goals of SymbolicData

3.1 Collecting and maintaining data

To collect data from a certain application �eld one �rst has
to specify the structure of the records to be collected. This
requires to create one or several data tables via their meta
tables.

As described above, a meta table consists of a set of tag
descriptions, i.e., sd-�les that can be created with any text
editor and inserted at the right place via the symbolicdata
Insert action. Each such meta sd-�le contains the descrip-
tion of the attributes of a tag of the table to be de�ned.

Several such tag de�nitions (ChangeLog, Comment, Date,
PERSON, Version) are prede�ned, i.e., inherited from a \mas-
ter table" (which is an abstract class in object-oriented ter-
minology). In particular, all records have a PERSON tag de-
�ned which is to be used as a reference to the table PERSON

that collects information (a�liations, email addresses, etc.)
of persons who contributed to SymbolicData. This guar-
antees a fair authorship management of di�erent contribu-
tions along the GNU Public License conditions which applies
to SymbolicData as a whole.

Furthermore, depending on the domain of the applica-
tion, tag and/or table speci�c Perl functions might have to
be implemented and speci�ed in the meta sd-records which
realize semantical operations like validation, generation, and
comparison of tag values.

After the new table is speci�ed, records of this table may
be inserted into the data base. Each record has to be sup-
plied as sd-�le that either can be created by a text editor
from a template or converted with appropriate Perl tools,
possibly using the SymbolicData programming environ-
ment, from other formats.

New sd-records should be inserted into the data base
using

symbolicdata Insert [options] sd-file(s)

This action �rst validates the given record, secondly, checks
for uniqueness of the new record, and, thirdly, inserts the
record as sd-�le at the right place.

Validation �rst checks for correct at XML syntax and
presence and plausible values of all mandatory tags. Then,
level by level, tag values are checked syntactically and, if
a tag `validate' and/or `generate' function is de�ned in the
corresponding meta sd-�le, the tag value may also be se-
mantically validated, or even generated.

After validation, the record is checked for uniqueness
w.r.t. the existing records of the same table in the data
base. This is either accomplished by a (semantical) `com-
pare' function de�ned in the table's meta sd-�le or by the
standard compare function that compares tag values by
string comparisons modulo whitespaces. Note that a seman-
tical comparison of two records may require certain elabora-
tions since the same example may, e.g., occur with di�erent
variable names or in di�erent representations.

In general, the evaluation of semantical aspects of records
requires to cooperate with software capable of symbolic ma-
nipulations. For reasons of familiarity, personal preference,
and suitability, we use, at the moment, only Singular [6]
for such purposes. However, if it becomes necessary or con-
venient, other CAS could supplement or replace Singular
as the underlying Computer Algebra engine.

3.2 Running benchmark computations

SymbolicData's Compute environment is set out to realize
the following three goals:

1. To facilitate automated and trusted benchmark compu-
tations, that is, benchmark computations whose results
w.r.t. time and correctness are repeatable, comparable,
and trusted by the community.

2. To serve as a test-bed for developers, that is, as a tool
with which developers of Computer Algebra software
can conveniently and reliably evaluate new algorithms
and implementation techniques.

3. To provide a repository of computational results which
can be used for further development, like computing
invariants of the original example, correctness veri�ca-
tions and timing comparisons of other computations,
etc.

In this section, we present the main principles of the
realization of these ambitious goals. See [9] for details, fur-
ther explanations, examples and complete on-line documen-
tation.

Analyzing the general nature of benchmark computa-
tions reveals dependencies on the following parameters2:

Example: The example which is to be computed, i.e., an
sd-record which provides the object of the computation.

COMP: The actual computation to be performed, i.e., an
sd-record of type COMP which describes the computation
and serves as an interface to (Perl) routines, which ex-
amine an example for suitability for this computation,
and, where applicable, check the syntactical and se-
mantical correctness of the result of the computation.

CASCONFIG: A con�guration of a Computer Algebra
software which realizes the computation, i.e., an sd-
record of type CASCONFIG which on the one hand, iden-
ti�es the software, its version, and its implemented
benchmark capabilities, and, on the other hand, serves
as an interface to (Perl) routines which generate the
input �le and shell command to run the computation,
which check the output of the computation for run-
time errors, like out of memory, segmentation viola-
tions, syntax errors, and, if necessary, which perform
(syntactic) transformations on the result such that it is
suitable for further processing independent of the ex-
amined Computer Algebra software.

MACHINE: A description of the computer used for the
computation. Such an sd-record of type MACHINE can
automatically be generated by means of the action
symbolicdata ThisMachine and further be used to
specify the executables of particular CASCONFIGs.

Dynamic parameters: This includes speci�cations of: in-
tervals for the run-time of a computation; which error,
resp. veri�cation, checks should be performed on the
result; what to do with the output of the computation.

The benchmark computations of SymbolicData are fa-
cilitated by the Perl module Compute and realized using

2Where possible and reasonable, we encapsulate these dependen-
cies into tables.
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symbolicdata Compute [options] sd-file(s)

Parameter speci�cations are given either by command-line
options, or, often more suitably, by init-�les. A benchmark
run consists of the following stages:

1. Check of correctness and completeness of input param-
eters.

2. Set-up of the computation.

3. Run of the computation.

4. Evaluation of the computation.

The set-up and evaluation stage require communications
between the Compute module and the Perl routines speci-
�ed by the input COMP and CASCONFIG records. The given
input and expected output of these external routines is well-
de�ned and documented. To ease the addition of new com-
putations and systems to the available benchmark computa-
tions, as much functionality is provided by �rst, the Compute
module; second, the routines of the COMP record, and, third,
by the routines of the CASCONFIG record. For example, the
run-time error check speci�cation of a CASCONFIG can be as
simple as specifying a regular expression.

Based on the input �le and shell command returned by
the CASCCONFIG routines, the actual run of the computation
itself is fully controlled by the routines of the Compute mod-
ule. For reliability reasons, timings are measured externally
based on the GNU time program. While the actual compu-
tation is running, the symbolicdata program \sleeps" until
either the computation �nished, or the maximal (user plus
system) time allowed for a computation expired. In the lat-
ter case, the running computation is unconditionally inter-
rupted (killed) such that a following evaluation of the com-
putation recognizes a \maxtime violation". Furthermore,
if a run of the computation took less than a minimal (user
plus system) time required, the computation is repeated un-
til the sum of the times of all runs exceeds the bound, and
the reported time is then averaged. Notice that the mea-
sured computation times include the times a system needs
for start-up, input parsing, and output of result. While one
could argue that these operations do not really contribute to
the time of the actual computations, we did not separate out
these timings (at least for the time being) for the following
reasons:

� Mechanisms which isolate the pure computation time
and do not rely on a system's internal facilities to mea-
sure timings are cumbersome to implement and would
very much complicate the control and set-up of bench-
mark computations.

� Time measurements for computations which are not
dominated by the pure computation time are mostly
meaningless since start-up is a constant and I/O usu-
ally a linear operation w.r.t. the size of the input and
output data.

The information about a particular benchmark compu-
tation is collected into a record of the type COMPREPORT

which stores all input parameters and results, i.e., error
and veri�cation status, timings, output, etc., of the com-
putation. Where applicable and requested, records of the
COMPRESULT table are used to collect system independent,
veri�ed, and \trusted" results of computations. These
COMPRESULT records may be extracted from one or more

COMPREPORTs and may be used for further veri�cations and
computations of invariants.

Running automated benchmark computations may
quickly produce voluminous amounts of output data3.
Hence, we need mechanisms which e�ectively maintain and
evaluate this data:

First, note that this is a classical data base application.
We are in the process of developing tools to translate bench-
mark data to SQL and to store them in a classical data base.
However, even as data base application, the management of
benchmark data is still rather challenging since benchmark
data combines records, software, machines, algorithms, im-
plementations, etc. into a high dimensional \state space"
which needs to be analyzed.

Second, note that only tools to analyze benchmark data
are not enough. To e�ectively compare benchmark runs we
need standardized and widely accepted concepts and meth-
ods to statistically evaluate this data under various aspects.
The EvalComputation module provides a �rst solution at-
tempt. Since a detailed discussion of the involved aspects
would go beyond the scope (and frame) of this paper we re-
fer to www.SymbolicData.org/doc/EvalComputations/ for
a starting point for further thoughts and discussions.

3.3 Accessing and transforming the data base

One of the main purposes of digital data collections is to
exibly access, select, combine, sort, manipulate, etc. data
from the underlying data base by varying principles, and to
present the output in various formats.

Since standard data base programs allow much more
exible navigations through the underlying data pool,
SymbolicData provides an interface to SQL which allows
to de�ne, create, and generate di�erent SQL tables derived
from tables of the primary data base. In particular, all in-
terrelation information contained in the primary data base
may be extracted to SQL relation tables and stored in your
favorite (SQL compliant) data base. This interface, solely
ASCII based at the moment, is de�ned via attributes in
meta sd-�les.

For presentation of data we use HTML and standard
browser techniques. An HTML interface is best suited to
present and browse data, to create di�erent views, and trig-
ger search. Interrelations can conveniently be realized by
HTML links. As for today, we o�er a scratch implementa-
tion (see www.SymbolicData.org/Data). A more elaborated
interface is under development.

4 Two Examples

To illustrate the design principles described above, we de-
scribe in this section, by means of two examples, how tables
should be designed and used. That is, we present and ex-
plain the structure of the tables of the two application �elds
where we started to collect data.

4.1 INTPS { a collection of polynomial systems

As a �rst application we tried to specify a framework to unify
the di�erent benchmark collections of systems of polynomi-

3For example, running a Groebner basis benchmark on the
appr. 500 polynomial systems and 10 CASCONFIGs we have col-
lected/implemented so far, produces appr. 1GB of data, among it,
5000 COMPREPORTs!
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als as, e.g., [1, 2, 4, 8, 11, 12]. Each such system of polyno-
mials is de�ned through a �nite basis in a certain polynomial
ring R[x] in a list of variables x over a base domain R. It
occurs that most examples may be reduced to systems of
polynomial with integer coe�cients or with coe�cients in
R = Z[p] where p is a list of parameters. We decided to
focus on such systems and to de�ne the corresponding table
INTPS accordingly.

A system of polynomials in INTPS is de�ned through its
basis, list of variables, and list of parameters. The tags
basis, vars, and parameters correspond to these entries.
They are the most important tags: basis and vars of
level==1, hence, mandatory; parameters of level==2 since
for R = Z there are no parameters.

For uniformity reasons and to ease comparison, we re-
quire of a \valid" INTPS record, that its basis polynomials
are stored in expanded form using the +, *, and ^ opera-
tors, and that the monomials of a polynomial and the poly-
nomials of the basis are ordered w.r.t. the degree reverse
lexicographical ordering. Based on Singular, the (Perl)
INTPS::validate routine de�ned in the INTPS table module
validates, and, if requested, necessary, and possible, \�xes"
these properties of an INTPS record.

Further tags are de�ned to collect background informa-
tion about the di�erent polynomial systems. Background
information may be of structural or relational type. Struc-
tural information about a polynomial system concerns in-
variant properties of the basis and the ideal generated by it,
e.g., lists of the lengths and degrees of the basis polynomi-
als, the dimension or degree of the ideal, a prime or primary
decomposition of the ideal, or certain parameters of such a
description. Several optional tags, like llist, dlist, dim,
degree, isoPrimes, isoPrimeDims, etc., and Perl routines
are de�ned to collect or even generate such information.

Relational information relates the polynomial systems to
other tables. This might be a bibliography reference of the
origin of the example, bibliography references of papers that
considered the example, a problem description of where the
example came from or how it was generated from certain pa-
rameters, etc. Since relational information relates two tables
we have to declare one of them as foreign and to attach the
information to the other table. For INTPS, we de�ne optional
tags BIB containing a reference to the original bibliography
source described in the BIB table and PROBLEMS containing
a reference to a problem description in the PROBLEMS table.
For the bibliography references to papers that consider the
given example we declare the INTPS table as foreign, i.e., we
de�ne a corresponding INTPS tag in the BIB table. The main
reason for this decision is persistence in the sense that we do
not need to change an INTPS record each time a new pub-
lication refers to it. For similar reasons, the bibliography
reference of the origin is attached to the INTPS table, not to
BIB. Note that it is not always as easy as here to make such
a judicious decision.

For integrity reasons, we furthermore need to assure
that there are no \equal" records in our collection of INTPS
records. The �rst problem we face here, is to decide what we
actually mean by \equality" of INTPS records. Possible de�-
nitions range from equality of the ideals generated by the ba-
sis polynomials up to string equality of the basis tag values.
With benchmark computations in mind, we decided on the
following de�nition: Let F = (f1; : : : ; fn) 2 R[x1; : : : ; xm]

n,
G = (g1; : : : ; gn) 2 R[y1; : : : ; ym]

n be n-tuples of polyno-
mials. Then we de�ne F to be equal to G i� there exist

permutations � 2 Sm; � 2 Sn such that

fi(y�(1); : : : ; y�(m)) = g
�(i)

for all 1 � i � n.
Having this de�nition at hand, we still need e�ective

methods to actually determine the equality of two INTPS

records: a brute-force, trial-and-error method is certainly
computationally infeasible, since already by now we have
INTPS records with polynomials in more than 40 variables.
For this purpose, the �rst author has developed and imple-
mented within Singular an algorithm which uses structural
information of the polynomials to signi�cantly cut-down the
number of possible permutations. Tested with random per-
mutations on about 500 examples from our collection, the
implementation needs at most a minute or so to recover
the input permutations and hence, to decide the equality
of INTPS records in the above sense. Details of the algo-
rithm and its implementation will be given in a forthcoming
publication.

4.2 GEO { a collection of mechanized geometry
theorem proofs

As a second application of our general framework we col-
lected examples from mechanized geometry theorem prov-
ing scattered over several papers mainly of W.-T. Wu, D.
Wang, and S.-C. Chou, but also from other sources. The
corresponding GEO table contains about 250 records of ex-
amples, most of them considered in Chou's elaborated book
[3].

The examples collected so far are related to the coor-
dinate method as driving engine as described in [3]. The
automated proofs may be classi�ed as constructive (yield-
ing rational expressions to be checked for zero equivalence)
or equational (yielding a system of polynomials as premise
and one or several polynomials as conclusion).

To distinguish between the di�erent problem classes we
de�ned a mandatory tag prooftype that must be one of
several alternations de�ned in the Syntax attribute in the
corresponding meta sd-�le. Extending/modifying this entry
modi�es the set of valid proof types. Hence the table is open
also for new or re�ned approaches.

According to the general theory, see, e.g., [3], for a ge-
ometry proof in the framework under consideration one has
to �x

� lists of independent (tag parameters) and, for equa-
tional proof type, dependent (tag vars) variables,

� formulas for the coordinates (tag coordinates) of all
intermediate points, lines etc.,

� for equational problems, the polynomial conditions
de�ning the relations between the dependent variables
(tag polynomials),

� the conclusion polynomial(s) (tag conclusion),

� and possibly polynomial inequalities (tag constraints)
which are required to be satis�ed since the conclusion
is invalid in general.

Further, we collect some background information of rela-
tional type and, for equational problems, also a \proof" (tag
solution)4.

4For constructive problems, a normal form computation of the
rational expression obtained from the conclusion proves or disproves
the theorem.
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At the moment the background information consists of
a reference to PROBLEMS as foreign table which points to a
statement of the geometry theorem and, for equational type,
a reference to the corresponding polynomial system in the
INTPS table. References to bibliography entries are handled
as above, i.e., GEO is considered as foreign table and the
references are attached to BIB records.

We follow the spirit of [3] and collect not only the cor-
responding polynomial systems but also the way they are
created from the underlying geometric con�guration, i.e.,
the corresponding code of a suitable geometry software. To
study aspects of code reusability and generality we took the
Geometry package [5] of the second author as base, that
meanwhile exists in versions for Reduce, Maple, Mathe-
matica, and MuPAD.

Due to di�erent restrictions (case sensitivity, principal
syntax di�erences), the code which describes a geomet-
ric statement in the Geometry package language (Geo
code, for short) varies between di�erent CAS, but in a
way that can be handled automatically. The tag values of
coordinates, polynomials etc. contain code in a generic
language that can be processed by Perl tools to generate
correct Geo code for the di�erent CAS. The design of this
generic language may serve as a prototype also for other ta-
bles that store CAS code. We will not embark into details
here, since this part works well for the special application
but is yet under development.

The solution tag value contains code that is generic in
a more obvious way. In most cases it contains the lines

sol:=geo_solve(polys,vars);

geo_eval(con,sol);

or

gb:=geo_gbasis(polys,vars);

geo_normalf(con,gb,vars);

where polys, vars, and con are assumed to be CAS vari-
ables that contain the polynomial conditions, variables, and
conclusion and geo solve, geo eval, etc., are appropriate
procedures for solving, evaluation, Groebner basis and nor-
mal form computation, that are de�ned in special interface
packages, one for each CAS, in terms of the respective func-
tionality of the given CAS. To really prove one of the given
geometry theorems, the respective CAS must load the inter-
face package as init-�le and the SymbolicData tools must
translate the given tag value into syntactically correct input
for the given CAS.

5 The Current State of the Project

The SymbolicData project evolved as a permanent inter-
play between its two facets: collecting data and extend-
ing/improving concepts, design, and tools.

As of today, the SymbolicData contributors collected
more than 1100 sd-records, wrote 40 Perl modules with more
than 15 000 lines of code, and implemented 22 actions for the
standard interface program symbolicdata. The following
short alphabetical overview of tables which currently exist
may give the reader a feeling about the overall structure of
the data that was collected so far.

� Table BIB: Table for bibliography entries.

Collects bibliographical information in BibTeX format,
short abstracts, and relational information to the GEO,
INTPS, and PROBLEMS tables.

� Table CAS: Table for general descriptions of Com-
puter Algebra software.

Collects information about the address, author, email,
url etc. of the software, and also a short description.

� Table CASCONFIG: Table for con�gurations of
Computer Algebra software to execute benchmarks, see
section 3.2.

� Table COMP: Table for descriptions of computations,
see section 3.2.

� Table COMPREPORT: Table for reports of exe-
cuted benchmark computations, see section 3.2.

� Table COMPRESULTS: Table for the output of ex-
ecuted benchmark computations, see section 3.2.

� Table GEO: A collection of problems arising from
mechanized geometry theorem proving, see section 4.2.

� Table INTPS: A collection of polynomial systems
with integer coe�cients, see section 4.1.

� Table MACHINE: Table of computers on which
benchmark computations are performed, see section
3.2.

� Table PERSON: Table of developers/contributors
who are involved with SymbolicData.

� Table PROBLEMS: More detailed background in-
formation and comments about di�erent problems.

This may be a problem description, a pointer to the
origin of the problem, related CAS code, and/or certain
key words.

We started �rst benchmark computations on Groebner
bases, using various coe�cient domains and monomial or-
derings. These benchmarks have been (and are) run on
the more than 500 INTPS records using 10 versions of dif-
ferent Computer Algebra systems. Other benchmark com-
putations on polynomial systems (like \solving", real root
isolation, syzygy/resolution computations) are in prepara-
tion.

www.SymbolicData.org will soon become the central site
of the SymbolicData project, containing its WWW-pages,
and its CVS and FTP repositories. It will be related to the
Medicis project [7] that \can be used by anybody to solve
scienti�c calculations with the tools of computer algebra and
symbolic computation. It can, in e�ect, put at your disposal
hardware resources, software and expertise." (from their
web pages).

6 Concluding Remarks

SymbolicData grew out of a \grass root initiative" of a
small number of people. We think that this is the most
natural and productive way to start up and realize such a
project. During the development we have striven for a good
balance between far-reaching ideas and usable, deliverable
results. Most of the concepts and tools described in this
paper have undergone major revisions, as we gained further
experience with the subject. We thank all the developers
of SymbolicData for their skill, patience, and vigor during
our collaboration, and present this paper on behalf of this
community.
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SymbolicData has now reached a stage where its main
concepts and tools are reasonably stable, general and ap-
proved. In other words, SymbolicData is ready to be
shared with a greater community for use, further develop-
ment, and extension. For this, we seek cooperations for the
design and implementation of data collections from other
areas of Computer Algebra.
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