
AGENTWORK: A Workflow System Supporting Event-
Oriented Workflow Adaptation

(Technical Report)

Robert Müller1, Ulrike Greiner, Erhard Rahm

Department of Computer Science, University of Leipzig, Germany

Abstract

Current workflow management systems still lack support for dynamic and automatic workflow adaptations.

However, this functionality is a major requirement for next-generation workflow systems to provide sufficient

flexibility to cope with unexpected failure events. We present the concepts and implementation of AGENTWORK,

an event-based workflow management system supporting automated workflow adaptations in a comprehensive

way. In particular, AGENTWORK uses temporal estimates to determine which remaining parts of running work-

flows are affected by an exception and is able to predictively perform suitable workflow adaptations. This helps

ensure that necessary adaptations are performed in time with minimal user interaction which is especially valu-

able in complex applications such as for medical treatments.

Keywords: Workflow Management, Adaptive Systems, Active Rules, Temporal Logics, Agents

1. Introduction

Workflow management is widely adopted as a core technology to support long-term application processes in het-

erogeneous and distributed environments [1,16,19]. Main characteristics include the clear separation of application

program code from the overall process logic and the integration of automated and manual activities. Workflow

technology is increasingly used to manage complex processes in internet-based e-commerce, virtual enterprises, or

medical institutions [29,44]. For example, due to precisely specified treatment procedures in many medical disci-

plines, workflow management systems can be used to implement diagnostic and therapeutic processes [13,36,44].

Major goals are an improved and timely treatment of patients and a significant workload reduction for the hospital

personnel.

However, conventional workflow management systems do not provide sufficient flexibility to cope with the

broad range of failures that may occur during workflow execution. In particular, not only system failures such as

hardware or software crashes need to be dealt with but also logical failures or exceptions. These refer to applica-

tion-specific exceptional events for which the control and data flow of a workflow is not adequate anymore and

1 Corresponding author. E-mail addresses: {mueller, greiner, rahm}@informatik.uni-leipzig.de.
1

thus has to be adapted [48]. The automatic treatment of such logical failures is the main subject of this paper.

For example, in the cancer chemotherapy workflow shown in Fig. 1 it is detected just before the administration

of drug C that the leukocyte count (i.e., the number of white blood cells per mm3 of blood) has become critically

low, so that there is the risk of a serious infection for the patient. As drug C is known to reduce the leukocyte count

additionally as a negative side-effect, the activity "Administer drug C" dynamically has to be removed from the

workflow while the execution of the other activity nodes can be continued without change. Furthermore, to protect

the patient from an infection, it may also be necessary to dynamically add an activity supporting the administration

of an antibiotic drug after the cancer chemotherapy.

Previous work on dynamic workflow adaptation mostly focussed on a manual approach where the administra-

tor or a user has to decide which events constitute logical failures and which adaptations have to be performed (e.g.,

[41]). However, the manual approach can be time-consuming and error-prone thereby threatening the goals to be

achieved with workflow management. For example, during a therapy such as the one shown in Fig. 1, a physician

is usually faced with up to 20 patients and 10-30 findings per patient every day. With a manual failure handling,

the physician always would have to keep in mind which findings may induce which adaptations, or at least would

have to look it up in text books in a time-consuming manner. Hence, events constituting logical failures may be

overseen or detected too late.

Recent approaches supporting automated workflow adaptation [7,9] typically limit adaptations to the currently

executed workflow activities. Such an approach is only of limited usefulness as all workflow parts not yet reached

by the control flow are not adapted automatically. This may also lead to situations where necessary adaptations are

performed too late so that significant problems can occur. For example, in cancer therapy adding a new drug ad-

ministration typically requires ordering the necessary drugs one or two days before the planned administration in

order to prepare a patient-specific infusion. Thus, in order to allow a timely drug administration the corresponding

workflow adaptation should be performed as soon as possible. Similarly, the dropping of a cancer drug (such as

drug C in Fig. 1) should not be performed in a "last minute" manner but in advance to avoid that a very expensive

Fig. 1: Workflow adaptation example.

Perform
pre-

examination

AND-
SPLIT
AND-
SPLIT

Administer
drug A

Administer
drug B

AND-
JOIN
AND-
JOIN

ENDEND

Administer
drug C

STARTSTART

Administer
drug D

i++ < 5

i = 5i := 0

LOOP-
START
LOOP-
START

LOOP-
END

LOOP-
END

Administer
antibiotic
drug E

wait(1 day)

Drop activity
(because of leukocyte
count < 1000 #/mm3)

wait(1 day) wait(1 day)

Add activity
(to protect from
infection)
2

drug infusion has to be poured away. Of course, early scheduling of new activities and avoiding the unnecessary

execution of originally planned activities are of great importance in many workflow application domains, e.g., for

product delivery in supply chain management, writing reviews in evaluation processes etc..

To overcome the limitations of existing systems and comprehensively support automated workflow adapta-

tions, we designed and developed the event-oriented workflow management prototype AGENTWORK. It is the first

system we know of that can predictively adapt the yet unexecuted parts of running workflows in a largely automat-

ed manner. The implementation of such a capability poses many challenges, in particular support for a temporal

model in the specification and treatment of logical failures. This paper gives an overview of AGENTWORK and its

underlying concepts. The contributions of our work are as follows:

• We support two strategies for automatic workflow adaptation called predictive and reactive adaptation. Predic-

tive adaptation adapts workflow parts affected by a logical failure in advance (predictively), typically as soon

as the failure is detected. In many situations this gives enough time to meet organizational constraints for

adapted workflow parts. Reactive adaptation is typically performed when predictive adaptation is not possi-

ble. In this case, adaptation is performed when the affected workflow part is to be executed, e.g., before an

activity is executed it is checked whether it is subject to a workflow adaptation such as dropping, postponement

or replacement. We provide mechanisms to decide whether reactive or predictive adaptation is more suitable

for a particular failure situation.

• We provide an ECA (Event/Condition/Action) model to automatically detect logical failures and to determine

the necessary workflow adaptations. To support predictive workflow adaptations, we provide a novel ECA

model based on a temporal object-oriented logic that allows us to specify the valid time interval for which an

adaptation has to be performed. Furthermore, our approach supports the integrity of ECA rule sets.

• We provide workflow estimation algorithms to determine which workflow part is affected by a logical failure

and needs to be adapted.

• We support a comprehensive set of operators for automatic workflow adaptation, including control flow opera-

tors which for example allow us to add or delete workflow activities. Furthermore, data flow operators are pro-

vided that adapt the data flow after a control flow adaptation, if necessary.

• Finally, we provide mechanisms to monitor adapted workflows by checking whether the used time estimates

are met when the adapted workflow is continued.

As a first application area, AGENTWORK supports workflows for cancer treatment in an interdisciplinary med-

ical project at the University of Leipzig [35,36]. Though important conceptual decisions are motivated by this med-

ical workflow application, AGENTWORK has been designed to be usable in other workflow application domains as
3

well (such as insurance business or banking). In particular, the basic AGENTWORK model only assumes generic

events and workflow activities. By subclassing, these generic events and activities can be refined in a domain-spe-

cific manner (e.g., for a business domain) without affecting the workflow adaptation model.

The paper is organized as follows. In the next section, we give an overview of the AGENTWORK system. Section

3 describes our ECA rule model. Section 4 presents the approaches for selecting the adaptation strategy, workflow

duration estimation, control and data flow adaptation, and workflow monitoring. Finally, we discuss related work

(section 5), and summarize and sketch future work (section 6).

2. AGENTWORK overview

In this section, we first sketch the architecture of the AGENTWORK system. Then, we sketch the main model com-

ponents (e.g., rules and workflows) and their principal interactions.

2.1. Architecture

Fig. 2 shows the three architectural layers of

AGENTWORK:

The workflow definition and execution

layer provides components for the definition

and execution of workflows. A workflow editor

and a workflow engine form its main compo-

nents. In contrast to most other workflow man-

agement systems, the AGENTWORK engine sup-

ports the suspension or adaptation of currently

executed workflows.

The adaptation layer implements the main

concepts of AGENTWORK and provides three

agents for the handling of logical failures. The

components of this layer are called agents because they have several properties which are associated with agent-

oriented modeling and programming, such as "intelligence", autonomy, and cooperation [24].

• The event monitoring agent decides which events constitute relevant logical failures. It uses ECA rules specify-

ing under which condition an event induces that a workflow becomes logically inadequate, and which adapta-

tion operations have to performed on a workflow to cope with this event (section 3).

• The adaptation agent performs the adaptation. In particular, it decides which adaptation strategy (reactive or

predictive) is suitable, and applies the necessary control flow adaptations to the workflow. If necessary, it

Fig. 2: AGENTWORK overview.

Event
monitoring

agent

Workflow editor Workflow engine

AGENTWORK environment: Databases,
application programs, user interfaces

Workflow
monitoring

agent

Inter-workflow agent

Remote workflow systems

Adaptation
agent

Adaptation layer

Workflow definition and execution layer

Communication layer

Communication layer
4

adjusts the data flow as well. In case of predictive adaptation, it performs a workflow estimation. This estima-

tion determines which workflow part will be executed during the temporal interval for which adaptation opera-

tions have to be performed. All adaptations are subject to a manual confirmation (section 4).

• The workflow monitoring agent checks whether the assumptions of the adaptation agent are met when the

adapted workflow is continued. In particular, it checks whether the estimated execution durations are met by

the execution reality. If this is not the case, it induces a correction of the estimation and a readaptation of the

workflow (section 4).

The communication layer manages the com-

munication between AGENTWORK components and

the environment, including remote workflow sys-

tems. It is based on the middleware CORBA [3] and

uses an XML message format. Its inter-workflow

agent determines whether a logical failure occur-

ring to a workflow has any implications for other

workflows cooperating with this workflow, and in-

forms affected workflows. As we have already ad-

dressed such inter-workflow aspects in [37], we do

not further consider this agent here.

2.2. Model overview

Fig. 3 shows the main model components of

AGENTWORK. Workflow definitions and specifica-

tion of ECA rules are based on a shared common

metadata schema. This metadata schema consists of a class hierarchy for cases, events, activities, and resources. A

Case object represents a person or institution for which an enterprise or organization provides its services (e.g., a

patient or a customer). Objects of class Event represent anything that may lead to logical workflow failures, such

as the new laboratory value in the example of Fig. 1. The Activity class is used to represent activities (e.g., a drug

infusion) that are executed in workflows for cases. Activities are performed by Resource objects, such as doctors,

clerks, application programs, or devices.

In AGENTWORK, we use a graph-oriented workflow definition model. Within a workflow definition, activities

are represented by activity nodes. An activity node has an associated activity definition to specify the details of the

activity (e.g., the dosage of a drug administration). An activity definition is based on the Activity class of the meta-

data schema. The details of our logic-based activity definition approach are described in section 3, where the par-

ticular logic used by AGENTWORK is introduced.

Fig. 3: Workflows and ECA rules.

Shared metadata schema

used by

Case classes

Event classes Resource classes

Activity classes

Workflow
definitions

Control flow

Data flow

ECA rules
for

logical failures

Control actions

control
(e.g., drop

activities etc.)

used by

Workflow
instances

executed
as

Failure events

Resource
binding

trigger
5

The control flow is specified by edges and control nodes. AGENTWORK provides control node types for condi-

tional branching (node types OR-SPLIT/OR-JOIN), for parallel execution (AND-SPLIT/AND-JOIN), and loops

(LOOP-START/LOOP-END). We use symmetrical blocks for control flow definition, i.e., for every split node or

LOOP-START node there must be exactly one closing join node resp. LOOP-END node. This principle of sym-

metrical blocks, which supports readability and facilitates temporal estimations, is known from structured pro-

gramming and has recently also been applied to workflow management [27,41].

The data flow is represented by data flow edges. Internal data flow edges specify the data flow between nodes

within one workflow. External data flow edges specify the data flow between activity nodes and external data

sources such as databases or user interfaces.

As usual, the term workflow instance (or simply workflow) refers to an instantiation of a workflow definition

executed by the workflow engine. For simplicity, we assume in the following that a workflow runs for exactly one

case (e.g., one patient or customer) and that at most one workflow is executed for a case at a given point in time.

Other possibilities, such as that one workflow runs for different cases during its life span, can be mapped to this

1:1 relationship between cases and workflows [35].

Finally, AGENTWORK uses ECA rules [40] to specify which events constitute logical failures and how to deal

with them. For the latter, ECA rules state which control actions have to be performed for workflow adaptation, i.e.,

it is specified which activities have to be dropped, added, replaced etc. (as illustrated in Fig. 1). Such a rule-based

approach is highly flexible as rules are able to react on events at any time during workflow execution without mak-

ing assumptions about when these events occur. This is in contrast to an approach based on adding conditional

branches to a workflow definition to test for logical failure events. These conditional branches would have to be

inserted at many places and reduce workflow readability and maintainability significantly. For the same reasons,

exception handling approaches from the field of programming languages, such as JAVA’s try & catch blocks, can-

not be used. This is because they require that the relative point in time of the failure event occurrence w.r.t. a par-

ticular position in the program (i.e., the workflow definition) is known at definition time. However, this is not pos-

sible for most types of failure events.

3. Temporal ECA rule model

In this section, we first sketch the principal structure of our ECA rules (3.1). Then, we introduce the temporal logic

ACTIVETFL to specify on a formal level our ECA rules and the workflow activities they refer to (3.2). Finally, we

sketch rule integrity aspects (3.3). For simplicity, we concentrate on events occurring to cases (e.g., patients). Log-

ical failures for workflow resources, such as a broken computer tomography device making it temporarily impos-

sible to execute some activities, can be treated analogously [35]. Furthermore, in the examples we omit application-

specific details such as the units of laboratory values and drug dosages.
6

3.1. Structure of ECA rules

In AGENTWORK, ECA rules have the following basic structure:

WHEN event

WITH condition

THEN control action

VALID-TIME time period

The event-condition (WHEN/WITH) part specifies which event consti-

tutes a failure event under which condition. The action (THEN) part declar-

atively states on a high level of abstraction which control action has to be

performed on a workflow to cope with the event, e.g., which activities may

have to be dropped or added. In particular, a control action does not make

any assumptions about how the activities are spread over different work-

flow definitions. This has the advantage that reorganizing activities and

workflows has no or only minimal effects on ECA failure rules. The VAL-

ID-TIME clause of the control action specifies the time period during which

the control action is valid, i.e., during which the respective adaptation needs

to be applied. An (informal) sample ECA rule is:

WHEN new finding of patient P (I)

WITH leukocyte count < 1000

THEN drop drug Etoposid for P

VALID-TIME during the next seven days

3.2. ActiveTFL

To specify our adaptation model and in particular our ECA rules formally, we use a logic. In particular, the well-

defined declarative and unambiguous semantics and proof theory of logics are suitable for automating workflow

adaptation. As existing logics such as First-Order Logic [11], Frame Logic [26], or Description Logic [17] either

do not provide sufficient data specification capacities (e.g., First-Order Logic) or temporal support (e.g., Frame

Logic), we designed the logic ACTIVETFL (Active Temporal Frame Logic). Basically, ACTIVETFL combines a

powerful object-oriented logic (namely Frame Logic) with elements from temporal logics and active rules known

from active databases (Fig. 4).2

3.2.1 Frame Logic

In the following, we introduce the relevant Frame Logic (FL) components by means of medical examples. This

2 We have not selected Description Logic, as this logic focuses on terminological reasoning and natural language processing
[17] which is not relevant for logical failure handling.

Fig. 4: Structure of ACTIVETFL.

ActiveTFL

Temporal Frame Logic

Frame Logic
(Data and Rule Definition Core)

Extended
with

active rules

Extended
with

temporal logics
elements
7

includes FL classes, objects, object extensions, object patterns, predicates, formulas, and rules.3

FL class definitions have the form

Case[case-id: Integer, name: String, events: Set<Event>, activities: Set<Activity>]

Event[date: Date, time: Clock-Time, of: Case]

Blood-Finding[parameter: Enum{Leukocyte-Count, ...}, value: Float]

Activity[date: Date, time: Clock-Time, activity-for: Case]

Drug-Administration[drug: String, dosage: Float]

Patient[social-num: Integer, diagnosis: String]

Patient IS-A Case Blood-Finding IS-A Event Drug-Administration IS-A Activity

"IS-A" denotes the subclass relationship (e.g., Patient is a subclass of Case). FL objects (i.e., class instances)

are denoted as follows:

d: Drug-Administration[date = 7/2/03, time = 9.00 am, activity-for = bob,

drug = "ETOPOSID", dosage = 100]

(with bob denoting some Case instance). The symbol ":" denotes the is-object-of relationship (e.g., d is an ob-

ject of class Drug-Administration).

For storage purposes, objects can be collected persistently in so-called object extensions. For example,

extension patients(Patient) (II)

defines an extension of Patient objects called patients. The mapping between these object extensions and the

physical data sources is the task of the communication layer (Fig. 2).

An Fl object pattern constrains the structure of an object. It has the form

Class[constraints]

with Class being an FL class and constraints being a set of constraints w.r.t. the attributes of Class objects. For

example,

Drug-Administration[drug = "ETOPOSID", dosage > 50] (III)

specifies the pattern of Drug-Administration objects representing ETOPOSID dosages higher than 50. The type

of an object pattern is denoted with Obj-Patt<Class>, e.g., Obj-Patt<Drug-Administration> for our drug admin-

istration example. Patterns of type Obj-Patt<Activity> are called activity patterns.

3 For better readability, we have adapted the FL syntax. Nevertheless, the language model is that of FL as described in [26].
8

In AGENTWORK, object and activity patterns are used to specify the details of workflow activities and to con-

strain the input and output objects needed or produced by activities. For example, the activity pattern shown in Fig.

5 specifies that the drug ETOPOSID has to be administered as an infusion with a dosage of 100 (the date/time/activ-

ity-for attributes are left unspecified as their values can be determined not before workflow execution time). Fur-

thermore, it is specified that two Blood-Finding objects, h1 and h2, are expected as input representing the leukocyte

resp. thrombocyte count). Furthermore, it is specified that a physician is needed as a resource to perform this ac-

tivity, and that a Chemo-Report object is produced as output. As a shorthand, we use the terms A-activity and A-

node to denote an activity resp. activity node based on an activity pattern A.

Furthermore, predicates can be defined in FL to express properties that hold for some objects. In AGENTWORK,

predicates are primarily used to express control actions such as drop in (I), e.g., we can define the predicate

drop(A, CS) (IV)

with A being of type Obj-Patt(Activity) and CS being an object of class Case to state that any activity executed

for case CS and matching pattern A has to be dropped.

Analogously to first-order logic [11], FL formulas can be constructed inductively on base of FL objects, pred-

icates, boolean operators, and quantifiers [26].

Rules in FL are used to express which formulas imply other formulas. For example, if A is the activity pattern

Drug-Administration[drug = "ETOPOSID"], then the rule

WHEN critical-blood-status(P) (V)

THEN drop(A, P)

states that whenever a patient P has a critical blood status (e.g., leukocyte count < 1000) − expressed by the

predicate critical-blood-status(P) − that then ETOPOSID has to be dropped for P. Note that such a rule is not yet an

ECA rule as it has no notion of "data events" such as inserting blood data into an extension. This will be described

in 3.2.3, where we introduce our notion of active rules.

3.2.2 Temporal FL

So far, an FL rule such as (V) does not specify the valid time of the derived control action, i.e., for how long the

“Administer Etoposid”

input output resource activity-pattern

h1 : Blood-Finding
[parameter = Leukocyte-Count]

h2 : Blood-Finding
[parameter = Thrombocyte-Count]

c: Chemo-Report p: Physician Drug-Administration

[drug = Etoposid,
dosage = 100]

Activity name
Fig. 5: Activity definition example.
9

activity specified by A shall be dropped for patient P To restrict the validity of a statement to some period of time,

ACTIVETFL supports so-called temporal frames and temporal formulas allowing us to assign a valid time to a for-

mula.

A temporal frame (T, <) consists of a non-empty discrete set T of "points in time" (i.e., the "time axis"), or-

dered by a non-reflexive binary relation < of precedence ("earlier than") [5]. A frequently used temporal frame is

the set of points in time of the gregorian calendar.

On base of a temporal frame (T, <), valid times can be assigned to formulas. We support two principal types,

fixed and conditional valid time, covering a broad range of time periods considered sufficient for most application

areas.

Fixed Valid Time: A fixed valid time is any set S ⊂ T which is described by an explicit listing of points in time

or by temporal functions. For example, [2 March 2003: 8 pm, 2 March 2003: 8 pm + (72, hour)] specifies the set

of points in time starting at 2 Dec 2003: 8 pm and ending after 72 hours (i.e., at 5 Dec 2003: 8 pm). Expressions

of the structure (amount, time-unit) specify an amount of time, e.g., (72, hour) for 72 hours. The interval

[now, now + (72, hour)] specifies the set of points in time starting at the current system time now (rounded to the

closest point in time of T) and ending after 72 hours.

Such a fixed valid time S then can be assigned to any FL formula via the VALID-TIME statement, i.e.,

F VALID-TIME S

states that F holds at every t ∈ S. An example for a rule with such a VALID-TIME statement is

WHEN critical-blood-status(P) VALID-TIME [now − (5, day), now] (VI)

THEN drop(A, P) VALID-TIME [now, now + (7, day)].

This rule states that whenever the predicate critical-blood-status(P) has been valid during the last five days,

that then drop(A, P) is valid for the next seven days.

Conditional Valid Time: To describe a valid time conditionally by a termination condition, we use the tem-

poral operators Until and Unless [12,32]. With these operators, it can be stated how the valid time of an FL formula

is related to the valid time of another formula. In the following, F and G are FL formulas while t, t’, t’’ denote

points in time.

• Until: This operator is used to express that a formula G eventually will be valid in the future and that a formula

F is valid at least until G (first) becomes valid, i.e.,

It holds:
(F Until G) VALID-TIME t iff

it holds:
It exists t’ > t with:

G VALID-TIME t’ and for all t’’ with t ≤ t’’ < t’ it holds:
F VALID-TIME t’’AND NOT (G VALID-TIME t’’)
10

A typical medical example for the Until operator is the rule

WHEN critical-blood-status(P) VALID-TIME [now − (3, day), now]

THEN add-repetitively(Drug-Administration[drug = "DOXYCYCLIN"], (1, day), P)
Until drop(Drug-Administration[drug = "ETOPOSID"], P)
VALID-TIME now

This rule states that whenever a patient P has had a critical blood status during the last 3 days, P must get the

drug DOXYCYCLIN repetitively every day until the drug ETOPOSID is dropped. The medical background for this

example is that a cytostatic drug such as ETOPOSID significantly increases the probability of serious bacterial

infections because of its immune-suppressive side-effects. Therefore, antibiotic drugs such as DOXYCYCLIN are

given prophylactically during chemotherapy when the blood situation becomes critical.

• Unless (Waiting-for): As F Until G by definition requires that G will eventually occur, sometimes weaker

statements are needed stating that F is valid either until G becomes valid, or is valid forever in case that G will

never become valid in the future. This is done by the Unless operator which is defined as

With Unless we can express statements such as that ETOPOSID has to be dropped when a patient has had a crit-

ical blood status for the last five days, and that ETOPOSID can only be given again when the blood status

becomes normal again (leukocyte count ≥ 1000):

WHEN critical-blood-status(P) VALID-TIME [now − (5, day), now]

THEN drop(Drug-Administration[drug = "ETOPOSID"], P)
Unless normal-blood-status(P)
VALID-TIME now

Note that in contrast to fixed valid times, the duration of such a conditional valid time typically is not known

beforehand. This difference between the two valid time types will be of particular importance for the adaptation

strategy as we will see in section 4.

3.2.3 ACTIVETFL

We now describe the principals of ACTIVETFL, which extends Temporal FL with the notion of primitive and com-

posite events, actions, and active rules.

A primitive event is the occurrence of a basic operation on an object extension. ACTIVETFL supports the prim-

itive event types INSERT, REMOVE, and UPDATE corresponding to the respective operations on extensions. In

our context, especially the insertion, removing or updating of an Event object is important, as such an Event object

can trigger a logical failure.

It holds:
(F Unless G) VALID-TIME t
(at point in time t, F is valid
unless G is valid)

iff
it holds:
(F Until G) VALID-TIME t OR
F VALID-TIME [t, ∞)
11

To filter relevant events, a condition can be assigned to a primitive event in the WITH part of a rule. This con-

dition may consist of any Temporal FL formula f on the object referenced in the WHEN part. The symbols new and

old refer to the new resp. old object after the INSERT, UPDATE, or REMOVE operation. An example is

WHEN INSERT ON blood-findings (VII)

WITH new.parameter = Leukocyte-Count AND new.value < 1000

with blood-findings(Blood-Finding) being an extension of Blood-Finding objects. This primitive event is trig-

gered whenever a new Blood-Finding object is inserted in the extension blood-findings, for which the measured

parameter is a leukocyte count less than 1000.

Composite events can be constructed from already defined events. ACTIVETFL supports the composite event

types conjunction, disjunction, negation, and time series [8,34]. As the definition of conjunctions, disjunctions, and

negations is straightforward, we only describe time series which are of particular importance especially for medical

domains (e.g., temporal course of laboratory findings) or business domains (e.g., stock exchanges). For example,

a single critical finding such as a low leukocyte value does not necessarily induce a logical failure but often only

the repetitive occurrence of critical findings.

Given some (primitive) event E, we say that a time series event over E with length n, minimal and maximal

temporal distances dmin and dmax occurs during the temporal interval I, if E occurs repetitively during I at a se-

quence of n points in time with a minimal distance of dmin and a maximal distance of dmax between two successive

points of the sequence, i.e.

The point in time at which an instance of TIME-SERIES(E, n, dmin, dmax, I) occurs is tn (as then the last instance

of E establishing the time series occurred).

A typical medical example for a time series event is the following: Let E be the (primitive) event that the leu-

kocyte count of a patient is less than 1000 as defined in (VII). Then,

WHEN TIME-SERIES(E, 3, (2, day), (4, day), [now, now + (2, week)]) (VIII)

occurs if during two weeks the leukocyte count of a patient is less than 1000 at 3 points in time with a minimal

distance of 2 days and a maximal distance of 4 days between two leukocyte measurements. The possibility to spec-

ify dmin respective dmax is helpful as often occurrences of E being too close together or too far away from each

other have a limited significance. For example, two leukocyte count measurements at two subsequent days do not

mean more information than one measurement, as the leukocyte value usually does not change significantly during

two days.

TIME-SERIES(E, n, dmin, dmax, I) occurs iff it exist t1 < t2 < ...< tn, ti ∈ I with:
dmin ≤ |ti − ti+1| ≤ dmax, i = 0, ..., n
E occurs at every ti.
12

In ACTIVETFL, the action part of a rule consists of a control action. To reduce language complexity and to fa-

cilitate the handling of control flow failures only one control action is allowed in the action part. For the conjunc-

tion of two control actions, two active rules have to be defined which are both triggered by the same event and

where each rule triggers one of the two control actions.4

Two main types of control actions are supported, namely global and local control actions:

Global control actions state that a workflow is not adequate anymore as a whole. We support the global control

actions abort and suspend for the entire abortion resp. suspension of a workflow. In the latter case a valid time state-

ment assigned to the suspension control action has to specify for how long the workflow shall be suspended.

Local control actions state that only some activities of a workflow are not adequate anymore. Thus, the work-

flow can be continued but has to be adapted locally. AGENTWORK supports the following local control actions

which are motivated by the fact that activity nodes cover the main semantics of a workflow, and that nodes can

either be dropped, replaced, added, or postponed (A and A’ denote activity patterns, and CS denotes a case).

• drop(A,CS): For CS, A-activities must not be executed anymore.

• replace(A,A´,CS): For CS, every A-activity execution has to be replaced by an A´-activity.

• add(A,CS): For CS, an A-activity has additionally to be executed exactly once.

• add-repetitively(A,d,CS): Additional A-activities have to be performed repetitively for CS. The duration

between two subsequent A-activity executions is specified by d.

• postpone(A,d,CS): For CS, every A-activity execution has to be postponed by duration d (relative to its control

flow position at the point in time the control action has been triggered).

• review(A,CS): For CS, every execution of an A-activity has to be reviewed by a user (manual control).

3.3. Rule integrity

Generally, rule integrity covers rule incompatibility and rule termination [40]. Concerning rule termination, our

approach does not add any additional complexity to rule processing as known from active databases and temporal

logics, so that we refer to [6,12,40].

In our context, the term rule incompatibility refers to the situation that two rules trigger incompatible control

actions at the same point in time. For example, it has to be avoided that two rules trigger a drop(A,CS) and an

add(A,CS) control action with the same activity pattern A for the same case CS with overlapping valid time inter-

4 Note that due to Horn clause theory, we have to forbid the disjunction of control actions to keep rules satisfiable.
13

vals. To cope with this, AGENTWORK uses incompatibility tables such as the one shown in Tab. 1 (there also exist

tables for global control actions and combinations of local and global control actions [35]). For example, the pair

add(A), replace(A,A’) (IX)

is viewed as compatible, as it may be necessary to add an activity and then to replace it directly. As an example,

imagine two rules where the first one states that drug A has to be administered in case of a particular infection, and

where the second one states that in case of an allergy w.r.t. A this drug has to be replaced by drug A’. If the patient

suffers from this particular infection and has an allergy w.r.t. A, add(A) and replace(A,A’) would be triggered si-

multaneously, and would have to be processed in the order add → replace.

Analogously, the pair

add(A), postpone(A,d1)

is viewed as compatible, as an A-activity can be added to other A-activities that shall be postponed. However,

if this pair is triggered the order in which both control actions shall be processed has to be determined (manually)

at execution time, i.e., whether the new A-activity shall be added first and then postponed with all other already

existing A-activities, or whether the new A-activity shall be added after the other A-activities have been postponed.

If incompatible control actions have been triggered simultaneously, the user has to be informed and has to re-

solve the situation manually.

4. Workflow adaptation and monitoring

We now describe how AGENTWORK processes triggered control actions. As the global control actions abort and

drop(A) replace(A,A’) postpone(A,d2) add(A)

drop(A) CP CP* ICP ICP

replace(A,A’) CP ICP CP**

postpone(A,d1) ICP for d1 ≠ d2 CP***

add(A) CP

ICP = Incompatible, CP = Compatible, A, A’= activity pattern, di = duration

Tab. 1: Incompatibility table for local control actions (with overlapping valid time intervals).

The case parameters have been omitted as incompatibilities only have to be considered if two actions refer to the same case

(e.g., the same patient). The review action is not listed as it has to be manually transformed to one of the other actions. The

add-repetitively action is handled analogously to the add action.

* replace is weighted stronger, i.e., A-activities are not only dropped but replaced by A’-activities
** Processed in order add → replace, i.e., first the new A-activity is added, then it is replaced together with already ex-

isting A-activities
*** Order to be determined manually at execution time.
14

suspend do not require workflow adaptations, we concentrate on local control actions. We first characterize the

principal adaptation strategies (reactive or predictive) that can be performed to handle a triggered control action

(4.1). We then describe workflow duration estimation for predictive adaptation (4.2). In 4.3 and 4.4, we outline the

use of adaptation operators to translate control actions into structural adaptations of a workflow. Section 4.5 de-

scribes how (predictively) adapted workflows are monitored to check whether the adaptation assumptions are met

by the actual execution.

4.1. Adaptation strategies

To support automated workflow adaptations for a broad range of failure situations, AGENTWORK supports both

reactive and predictive adaptation. AGENTWORK tries to use predictive adaptation whenever possible and to correct

running workflows as soon as possible to avoid the execution of unnecessary activities, reduce delays for new ac-

tivities, etc.

To illustrate the two strategies, we use the workflow example shown in Fig. 6. For this workflow running for

case CS, two parallel paths are executed when a logical failure event occurs after nodes 4 and 13 have committed.

The ECA rule for this event is assumed to trigger the control action drop(A,CS) with valid time VT.

Fig. 7 shows how selection of the adaptation strategy is performed. Principally, predictive adaptation can be

selected if a fixed valid time VT is assigned to the control action. Then, the temporal interval during which the con-

trol action is valid is exactly known already at the moment of the failure event. Thus, AGENTWORK can estimate

which workflow part PVT will be executed during VT. This is done by using temporal meta information about the

Fig. 6: Workflow estimation and adaptation.

OR-
SPLIT

OR-
SPLIT

OR-
JOIN
OR-

JOIN

19

... 2015 (A)14

6 75... OR-
SPLIT

OR-
SPLIT

OR-
JOIN
OR-

JOIN ...

IF liver metastases
= YES

IF liver metastases
= NO

Activity node will be
executed during VT 10

?

?
10

?

?

8
?

?
8

?

?

?
?

?
?

Not decidable whether
activity node will be
executed during VT

16
no

no
16

no

no
17

no

no
17

no

no

no
no

no
no

Activity node will not be
executed during VT

IF current leukocyte count
<= 2500

IF current leukocyte count
> 2500

12

21

1818

AND-
SPLIT
AND-
SPLIT

4

... 13

Activity node
already committed

!!

!

!

11
?

?
11

?

?

9
?

?
9

?

?

Failure event (moment at which drop(A,CS)
has been triggered by ECA rule)

Valid time VT of drop(A,CS)

Time axis

drop

Node with identifier n and
activity pattern A

n (A)

...

Workflow running for case CS
15

duration of workflow activities (see 4.2). For example, if VT in Fig. 6 is a fixed valid time, AGENTWORK can esti-

mate which workflow part PVT starting at nodes 5 and 14 will be executed during VT. This would result in predic-

tively dropping A-node 15 during the processing of the ECA rule and before continuing with the execution of nodes

5 and 14.

Since longer time intervals reduce the accuracy of the workflow estimates we differentiate between two sub-

types of predictive adaptation depending on whether or not the fixed valid time interval exceeds some specified

threshold value (Fig. 7). If not, the workflow part corresponding to the full valid time interval is estimated at once.

Otherwise, predictive adaptation with sub-intervals is selected. The valid time VT is divided into several sub-in-

tervals VT1, VT2, ..., VTn whose durations do not exceed the threshold. Then, it is first estimated which workflow

part P1 will be executed during VT1, and the adaptation is only applied to P1. After P1 has been executed, the pro-

cedure is continued for VT2 and so on. Suitable values for the time threshold depend on the application domain and

the quality of workflow estimation; the threshold is thus a configuration parameter of AGENTWORK.

The strategy of reactive adaptation is select-

ed whenever predictive adaptation is not

possible. In particular, if a conditional valid

time is assigned to a control action, it is not

possible to derive which part of the remain-

ing workflow will be executed during the

corresponding valid time interval. The reac-

tive strategy is also selected, if a fixed valid

time has been assigned to the control action,

but if an estimation is not possible, e.g., for

some conditional parts of the workflow such

as conditional OR-SPLIT or LOOP-END5 nodes (see 4.2). For example, if VT in Fig. 6 would be a conditional

valid time, reactive adaptation would be selected, and it would be checked for every node n that is reached by the

control flow during VT whether n is a A-node. As node 15 is such a A-node, it would be dropped after node 14 has

committed.

For both predictive and reactive adaptation, the data flow may have to be adapted as well after the control flow

adaptation, e.g., by removing or adding data flow edges. For example, if a node n of the remaining control flow in

Fig. 6 needs output data from the dropped A-node 15, it may be necessary to compensate the dropping of the A-

node by generating a data flow edge for n which retrieves the needed data from external data sources (see 4.4).

5 In AGENTWORK, a loop termination condition is specified at the LOOP-END node as loops have a repeat/until semantics.

Fig. 7: Strategy selection.

Triggered control action

Fixed valid time

Reactive
adaptation

Failure event

Predictive
adaptation with

sub-intervals

Full interval
predictive
adaptation

Valid time does
not exceed threshold

Valid time exceeds
threshold

Conditional valid time
16

4.2. Workflow duration estimation

In this section, we sketch our approach of estimating workflow execution durations for predictive adaptation.

To estimate which workflow part PVT will be executed during a valid time interval VT we use temporal meta

information about the estimated duration for each node and edge type. For simplicity we assume a negligible du-

ration of control nodes, control edges, external writing and internal data flow edges. Instead the estimates are based

on duration estimates for the execution of activity nodes and on duration estimates for data flow edges reading ex-

ternal data. AGENTWORK supports two ways to obtain such duration estimates: They can either be specified by the

workflow modeler during workflow definition or they are derived from measurements during workflow execution.

To support a high estimation accuracy the durations can be grouped according to different dimensions. Thus we

can have different values per activity type and data source, e.g., to differentiate between user types to account for

the fact that a beginner may need substantially more time for an activity than a sophisticated user.

In the current implementation, estimations are based on average duration values. Worst-case durations using

the maximal duration are viewed as too pessimistic as not enough adaptations may be performed, frequently re-

quiring additional adaptations. Best-case durations using the minimal duration cause the opposite effect so that too

many adaptations are triggered that may have to be revoked later on.

Estimation of PVT. To estimate the workflow part PVT to be executed during the valid time interval VT it is first

determined which running workflow is affected by the logical failure and which of its nodes would have to be ex-

ecuted next (e.g., nodes 5 and 14 in Fig. 6). The execution durations of all paths starting at these nodes are estimat-

ed. This is done by estimating and adding the durations of the blocks the paths consist of. Estimation of one path

stops if VT is "consumed" by that path or if there are unresolvable conditions at OR-SPLIT or LOOP-END nodes

(see below). PVT then consists of all nodes and edges of the estimated paths which are assumed to be executed dur-

ing VT. In the sequel we discuss how the execution duration of blocks is estimated.

The duration of a sequence of activity nodes (e.g., nodes 5, 6, and 7 in Fig. 6) is estimated by summing up the

average execution durations of all its activities and data flow edges.

In the case of a parallel block (AND-SPLIT/AND-JOIN) estimation is performed for each of the paths starting

at the AND-SPLIT node and the duration of the whole block is set to the maximum of the estimated durations of

all its paths.

Particular problems for estimation arise w.r.t. conditional blocks (OR-SPLIT/OR-JOIN) as they require data

dependent prediction of the paths that will qualify for execution when the workflow is continued. The duration of

the whole OR-SPLIT/OR-JOIN block is then set to the maximum of the estimated durations of the predicted paths.

Prediction of which paths will be executed within a conditional block may be possible if the data needed for the

decision is already available when the control action has been triggered. For the lower OR-SPLIT in the example
17

of Fig. 6, it may be known at estimation time (e.g., from former examinations) that the patient has liver metastases

so that it is known that only the lower path has to be considered. If no current data is available, execution proba-

bilities of previous workflow executions can be used to determine the most likely paths to be considered. If some

conditions cannot be evaluated at all AGENTWORK excludes the entire OR-SPLIT/OR-JOIN block (and all later

workflow parts of that path) from predictive adaptation and switches to reactive adaptation for these parts. In Fig.

6, this was assumed to be the case for the upper OR-SPLIT, as leukocyte counts may change significantly during

a few days so that former blood examinations cannot be considered for a predictive evaluation of the leukocyte

condition.

Similar problems arise w.r.t. the estimation of loops. If the control action has been triggered before the LOOP-

START node has been reached the duration of a loop is estimated by determining the duration of the loop’s body

and multiplying it with the estimated number of loop iterations. However, the exact number of loop iterations most-

ly depends on data which is produced during an iteration. In AGENTWORK, the estimated number of iterations is

either specified at workflow definition time (based on heuristics such as "On average, the radiotherapy unit of type

A has to be repeated three times until the tumor vanishes") or on the measured average number of iterations of the

respective loop during previously executed workflows.

If the control action has been triggered during loop execution it is tried to resolve the loop’s termination con-

dition in a similar way as it is done w.r.t. OR-SPLITS to predict if the loop will be executed again. This may be

possible if the required data has been produced already. Otherwise estimation stops at the LOOP-END node and

AGENTWORK switches to reactive adaptation for the further loop iterations and all later workflow parts of this path.

Recently, several other workflow estimation approaches have been suggested to support tasks such as deadline

management and scheduling for workflows [15,25,33]. However, they differ from our approach as they do not use

execution duration measurements and do not try to resolve conditional splits predictively.

4.3. Control flow adaptation

To translate control actions of ECA rules into structural control flow adaptations on specific workflow nodes and

edges, AGENTWORK provides a control flow operator for each control action introduced in 3.2.3. We sketch only

the operators drop-node and add-node (corresponding to the drop and add control actions), as the other operators

can be mapped to variations and combinations of these two. A node replacement is achieved by dropping a node

and adding another one at the same position, while a node postponement is achieved by dropping a node and in-

serting it at a later position of the workflow. The operators are used for both predictive and reactive adaptation.

Operator for node dropping. For node dropping, the operator drop-node (n: Integer)

is provided. This operator takes as input the identifier n of an activity node to be dropped. The effect of this

operator depends on the particular structure of the workflow part to which the affected node n belongs to:
18

a) If n is located in a sequence, it is simply removed from the control flow. Incoming and outgoing control flow

edges are merged together, and incoming and outgoing data flow edges are removed.

b) If n is the only node of a path p in an AND-SPLIT/AND-JOIN block, p is removed. If there is only one

remaining path after p has been removed, the AND-SPLIT and the AND-JOIN node are removed as well, as

they are not needed anymore.

c) If n is the only node of a path p in an OR-SPLIT/OR-JOIN block, n is removed, but p is left within the block

as an empty path. This is necessary to keep the conditional semantics of the workflow.

Operator for node adding. For node adding, the operator add-node(A: Activity-Pattern, n: Integer)

is provided. The first parameter specifies the activity pattern A that shall be assigned to the new node. The se-

mantics of the second parameter n is that the new A-node shall be inserted either directly after n or parallel to n, if

possible. By default, AGENTWORK selects a node just committed or currently executed for n, but the user can spec-

ify any other node.

Concerning the effect on the control flow, we distinguish two principal mechanisms of add-node to add a A-

node, namely sequential and parallel add.

Sequential add: The straight-forward way to insert the new A-node is to insert it directly behind node n (Fig.

8 a). The main disadvantage of sequential add is that it may delay the execution of successor nodes of n (e.g., node

2 in Fig. 8 a) more than necessary.

Parallel add: To minimize execution delays of successor nodes of n, parallel add inserts the new node into a

new parallel path. In the example of Fig. 8 b, a new A´-node 4 has been inserted into a new empty path parallel to

nodes 1 and 2. AGENTWORK tries to use temporal estimates to optimize a new AND-SPLIT/AND-JOIN block so

that a new parallel path is not longer than the execution duration of the other parallel path consisting of already

existing nodes. For this reason, in Fig. 8 b the AND-JOIN node was not inserted directly after node 1 but after node

2, to avoid that the new A´-node 4 (which is assumed to take longer than node 1 but less than nodes 1 and 2 together)

delays the execution of node 2.
19

AGENTWORK by default uses parallel add for imple-

menting add-node. Only if a temporally optimized parallel

add is not possible, e.g., when the needed temporal estima-

tions cannot be performed, the new node is sequentially add-

ed.

As dropping or adding activities such as drug adminis-

trations may have significant influence on a workflow,

workflow adaptations are viewed as suggestions that have to

be confirmed by a user. For example, a physician may reject

the dropping of a drug administration node despite some

negative side-effects, if he thinks that the drug administra-

tion is important for the patient.

4.4. Data flow adaptation

A data flow adaptation is required if a control flow adaptation results in activity nodes for which at least one input

object is not provided by the data flow anymore. For example, the output of a dropped node may be needed by a

remaining activity node or the input of a newly added node may have to be provided. Thus, appropriate data flow

edges have to be generated to provide needed input objects.

Analogously to control flow adaptation, data flow adaptation can be done reactively or predictively. Reactive

data flow adaptation means that the input object completeness of a node n is checked directly before n is executed.

If at least one input object is missing, the data flow is adapted. Reactive data flow adaptation strategy can be com-

bined both with reactive and predictive control flow adaptation. That is, even if the control flow is handled predic-

tively, the necessary data flow adaptations may be delayed until the respective activity nodes are to be executed.

Predictive data flow adaptation means that directly after a control flow adaptation input object completeness

is checked for all nodes that still have to be executed. If at least one input object is missing, the data flow is adapted

predictively. Note that predictive data flow adaptation can also be used for a reactive control flow adaptation. For

instance, when reactively dropping a node n, it can be checked whether this leaves a successor node of n without

an input object (as this input object has been provided by n). In this case, it may be possible to predictively adapt

the data flow to provide the input object in a different way.

Analogously to control flow adaptation, the predictive approach is used whenever possible since reactive data

flow adaptation can result in significant delays. For example, if a new therapeutic node requiring an x-ray finding

as input is added to a medical workflow, the new node may have to be delayed until the x-ray examination has been

performed.

Fig. 8: Application of control flow operator add-
node. (node rectangle length proportional to
execution duration.)

add-node(A, 1)

4 (A) 21... ... 4 (A) 21... ...

2 31... ... 2 31... ...

3

4 (A´)

AND-
SPLIT
AND-
SPLIT

AND-
JOIN
AND-
JOIN1 2... ...

add-node(A´, 1)

Node with
identifier n
and activity
pattern A

n (A)

a)

b)

2 31... ... 2 31... ...
20

Data flow adaptation is based on constraints that can be specified in the activity definition for input and output

objects. In addition to value constraints on these objects we also support temporal constraints, in particular to spec-

ify the currentness of input data. These constraints are used to decide whether a missing input object can be pro-

vided by activity nodes in the workflow. We illustrate this by the example of Fig. 9 where a data flow adaptation

is needed to provide the input object h for a newly added node n. According to the activity pattern of n, h has to

meet the value constraint that it should represent the leukocyte count. Furthermore, the temporal NOT-OLD-

ER-THAN constraint requires that the leukocyte count must not be older than 2 days when n is executed.

To perform data flow adaptation in this case, the temporal neighborhood of n is explored first. This means that

by workflow estimations it is checked whether there is any output object o of an activity node m meeting the con-

straints, i.e.,

• o is of the same type (e.g., Blood-Finding in Fig. 9) and attribute values (e.g., parameter = Leukocyte-Count)

as the input object h of n, and

• is provided not earlier than the point in time when n needs the input object h minus the distance specified by the

resp. NOT-OLDER-THAN constraint of h, and not later than the point in time when n needs h.

If these conditions are fulfilled, an internal data flow edge is generated that maps o to h. In the example of Fig.

9, it has been determined that node m belongs to the relevant neighborhood w.r.t. h, and provides an output object

o with the same type and attribute values as h. Therefore, an internal data flow edge mapping o to h is generated.

If the local temporal neighborhood of the workflow does not provide such a suitable output object o, AGENT-

“Administer Etoposid”

input

h : Blood-Finding
[parameter = Leukocyte-Count]
NOT-OLDER-THAN (2, day)

...

Internal data flow edge
o → h

Control flow

Data flow

i (A) j (A’)...

distance = (2, day)

Added activity node nActivity node m

Start of n
Commitment

of m

Time axis

“Blood Examination”

output

... o : Blood-Finding
[parameter =Leukocyte-Count]

“Blood Examination”

output

... o : Blood-Finding
[parameter =Leukocyte-Count]

add-node(“Blood Examination“, j)

Node with identifier j
and activity pattern Aj (A)

Fig. 9: Generation of data flow edges.
21

WORK inserts an activity node providing the needed data object (due to the activity node’s output specification).

For example, in Fig. 9 an additional blood examination node would be inserted by the add-node operator (with the

blood examination activity pattern as first parameter and the activity identifier of the predecessor node of n (i.e., j)

as the second parameter of add-node).

For details about data flow generation we refer to [35].

4.5. Workflow monitoring

Workflow monitoring is used in the context of predictive adaptation to check whether the estimated execution du-

ration of PVT matches the actually needed time. The estimates may prove inaccurate for a variety of reasons, such

as additional adaptations (e.g., adding or dropping nodes), additional delays for activity executions or external data

accesses (e.g., due to system failures), or inaccurate predictions for predictively handled OR-SPLIT and loop

blocks (4.2). These aspects result in two mismatch types w.r.t. the time estimates, namely temporal acceleration

and temporal delay.

Temporal acceleration occurs if PVT is executed faster than it has been estimated. This means that workflow

parts after PVT (e.g., nodes 12 and 21 in Fig. 6) will also be executed during VT and therefore further nodes not

considered so far may have to be adapted (e.g., dropped or added).

In case of a temporal delay parts of PVT will not be executed during VT anymore as the execution of some

nodes has taken unexpectedly long (e.g., node 20 in Fig. 6 may not be executed anymore during VT as the execution

of node 14 may haven taken unexpectedly long). Therefore, adaptations of these parts may have to be revoked, i.e.,

dropped nodes have to be added again or added nodes have to be dropped for example.

5. Related work

In this section we discuss related work from the fields of commercial workflow management, advanced transaction

models, adaptive workflow management, and artificial intelligence.

Several vendors and researchers have addressed failure and exception handling in workflow management sys-

tems [23,42,20,31,7,10,41,43]. However, only a few commercial systems such as PROMINAND [23], ACTION RE-

QUEST SYSTEM [42] or LOTUS DOMINO WORKFLOW [20] provide some support for workflow adaptation. For ex-

ample, ACTION REQUEST SYSTEM [42] is able to derive by ECA rules that an additional activity has to be executed.

However, the user has to select an appropriate insertion point in the workflow manually. Furthermore, ECA rules

with a valid time dimension and predictive adaptation are not supported by any commercial system.

Several studies focussed on workflow recovery from system failures, typically guided by an advanced transac-

tion model supporting compensation and forward recovery [2,21,39,47]. These approaches do not deal with chang-

ing the structure of running workflows to handle logical failures.
22

The TAM6 system [31,49] provides constructs to specify interaction dependencies between activities in an ap-

plication-dependent manner. These dependencies can dynamically be restructured if exceptions occur. Further-

more, any activity may be dynamically split into subactivities. Thus, manual reactive adaptation can be achieved

by splitting activities, but automation of failure handling via ECA rules and predictive adaptation are not supported.

Several recent research approaches have used ECA rules to specify which actions have to be performed on

workflows when failures occur [7,10]. For example, in CHIMERA-EXC [7] Datalog-based rules can be defined to

monitor events and to derive appropriate actions. In [10], ECA rules are used in combination with a nested trans-

action model to consider data dependencies between sub-workflows. However, these approaches do not consider

the valid time dimension of triggered workflow adaptations and do not support predictive adaptation.

The ADEPTflex system [41] provides an operator set for workflow adaptation (e.g., for dropping and inserting

nodes and edges) by preserving correctness and consistency of adapted workflows. Temporal implications of work-

flow adaptations such as deadline violations for workflow activities are considered, too [13]. However, no algo-

rithms are specified that decide automatically under which circumstances which structural adaptations should be

applied. The operator applications have to be selected by a user. Thus, automated and predictive workflow adap-

tation is not supported.

In [43], partially defined workflows can be executed that contain so-called "pockets of flexibility" with a set of

workflow fragments and rules stating how these fragments may be refined at runtime. Thus, a workflow can only

be adapted at predefined places. In particular, the temporal dimension of adaptations such as "drop this activity for

the next 5 days" is not supported.

In a medical project, we have used workflow refinement for dynamic workflow adaptation [36]. At execution

time, when all patient data is available, it is decided automatically which particular sub-workflow shall be selected

to treat the patient in an optimal manner. However, in this approach predictive and event-oriented adaptation is not

supported.

Recently, techniques from the field of artificial intelligence have been applied to workflow management, in par-

ticular planning techniques [4,45,30,22,38] and cooperative agent approaches [14,24,28,39,46]. However, the us-

age of planning techniques for our specific problem of predictive workflow adaptation is limited. This is because

these approaches typically do not support the temporal dimension of failures sufficiently and do not consider op-

erational aspects such as the consequences of an control flow adaptation for the data flow. Cooperative agent ap-

proaches provide a sophisticated way to detect and handle failures (e.g., [28]), but do not address the structural con-

sequences of failure handling on the graph level.

6 TAM = Transactional Activity composition Model
23

6. Summary and future work

In this paper, we have given an overview of the workflow management prototype AGENTWORK which provides a

comprehensive support for automated workflow adaptation. AGENTWORK uses ECA rules based on a temporal log-

ic to automatically cope with logical failures occurring during workflow execution. AGENTWORK supports both

reactive and predictive adaptation of workflows and tries to apply predictive adaptations whenever possible. This

is achieved by suitable estimation algorithms based on pre-specified or measured execution durations of activities

and for external data access. In addition to control flow adaptations, predictive and reactive data flow adaptations

are supported.

We believe that the timely and largely automated handling of logical failures can significantly improve the flex-

ibility and quality of workflow executions, in contrast to currently available solutions. In the considered application

area of cancer therapies these advantages are of critical importance. They cannot only reduce the administrative

burden for the personnel but also improve the treatment of patients.

Within a research project funded by the German Research Association (DFG), we are currently implementing

a prototype of the AGENTWORK system. As a core, we use the ADEPTflex workflow management system [41] for

the workflow definition and execution layer of AGENTWORK. ADEPTflex has been selected, as it − in contrast to

most commercial workflow management systems and research prototypes − supports the specification of execution

durations for activities and provides basic operators for dropping and adding nodes in workflow instances during

runtime which can be invoked via a JAVA API (Application Programming Interface).

For the event monitoring agent we could not use existing F-Logic implementations (e.g., [18]), mainly because

of their insufficient API capabilities. Therefore, we map active rules specified in ActiveTFL to database triggers.

Control actions derived by these database triggers are then sent to the adaptation agent using XML (eXtensible

Markup Language). We decided to use XML as it is a widespread data interchange format for which various com-

munication infrastructures exist (e.g., XML-RPC). The algorithms for workflow estimation as described in 4.2

have been implemented in JAVA in a straightforward manner using the activity execution durations provided by the

ADEPTflex workflow model. The adaptation itself has been realized by directly invoking the ADEPTflex control

and data flow operators using the ADEPTflex API. The workflow monitoring agent has been implemented in JAVA,

too.

Large parts of AGENTWORK have already been implemented and show the feasability of our failure handling

approach. The implementation is currently completed within an interdisciplinary medical project at the University

of Leipzig. We plan empirical studies on the usability of AGENTWORK and the quality of temporal estimations for

real-world workflows. Furthermore, we plan to consider other factors than "time", such as cost and "quality of ser-

vice/product". We will also evaluate the applicability of the approach in different application domains such as e-

business.
24

Acknowlegements

We thank the Database Section (Head: Prof. Dr. Peter Dadam) of the Department of Computer Science, University

of Ulm, Germany, for kindly providing the ADEPTflex prototype for us.

References
[1] G. Alonso and C. Mohan, WFMS: the next generation of distributed processing tools, in: S. Jajodia and L.

Kerschberg, eds., Advanced Transaction Models and Architectures (Kluwer, 1997) 35-62.

[2] V. Atluri, W-K. Huang and E. Bertino, A semantic based execution model for multilevel secure workflows,
Journal of Computer Security 8(1) (2000) 3-41.

[3] S. Baker, CORBA distributed objects (Addison Wesley, 1997).

[4] C. Beckstein and J.Klausner, A meta level architecture for workflow management, Journal of Integrated De-
sign and Process Science 3(1) (1999) 15-26.

[5] J. Benthem, Temporal logic, in: D.M. Gabbay, C.J. Hogger and J.A. Robinson, Handbook of logic in artificial
intelligence and logic programming, Volume 4: Epistemic and temporal reasoning (Oxford University Press,
Oxford, UK, 1995).

[6] E. Bertino, D. Montesi, M. Bagnato and P. Dearnley, Rules termination analysis investigating the interaction
between transactions and triggers, in: Proc. IDEAS’02 (IEEE Computer Society, 2002) 285-294.

[7] F. Casati, S. Ceri, S. Paraboschi and G. Pozzi, Specification and implementation of exceptions in workflow
management systems, ACM TODS 24 (1999) 405-451.

[8] S. Chakravarthy, V. Krishnaprasad, E. Anwar and S.-K. Kim, Composite events for active databases: seman-
tics contexts and detection, in: Proc. VLDB’94 (Morgan Kaufmann, 1994) 606-617.

[9] D.K.W. Chiu, Q. Li and K. Karlapalem, Web interface-driven cooperative exception handling in ADOME
workflow management system, Information Systems 26 (2001) 93-120.

[10] D.K.W. Chiu, A three-layer model for workflow semantic recovery in an object-oriented environment, in:
Proc. of ER 2001, Lecture Notes in Computer Sience, Vol. 2224 (Springer, Berlin, 2001) 541-554.

[11] J. Chomicki and G. Saake, Logics for databases and information systems (Kluwer, New York, 1998).

[12] J. Chomicki and D. Toman, Temporal logic in information systems, in: J. Chomicki and G. Saake, eds., Logics
for Databases and Information Systems (Kluwer, New York, 1998) 31-70.

[13] P. Dadam, M. Reichert and K. Kuhn, Clinical workflows - the killer application for process-oriented informa-
tion systems? in: Proc. 4th International Conference on Business Information Systems (Springer, Berlin,
2000) 36-59.

[14] S. M. Deen, Cooperating agents for holonic manufacturing, in: Proc. Multi-Agent-Systems and Applications
(2001) 119-136.

[15] J. Eder, E. Panagos and M. Rabinovich, Time constraints in workflow systems, in: Proc. CAiSE 1999 (Spring-
er, Berlin, 1999) 286-300.

[16] E. Ehud Gudes, Martin S. Olivier and R.P. van de Riet: Modeling, specifying and implementing workflow
security in cyberspace, Journal of Computer Security 7(4) (1999).

[17] E. Franconi, Description logics for natural language processing, in: F. Baader, D.L. McGuinness, D. Nardi
and P.F. Patel-Schneider, eds., Description Logics Handbook (Cambridge University Press, Cambridge,
2002).

[18] F. Frohn, R. Himmeröder, P.-Th. Kandzia, G. Lausen, C. Schlepphorst, FLORID - A prototype for F-Logic,
in Proc. 7th Bi-Annual German Database Conference (BTW’97) (Springer, Berlin, 1997) 100-117.

[19] D. Georgakopoulos, M. Hornick and A. Sheth, An overview of workflow management: from process model-
ing to infrastructure for automation, Journal on Distributed and Parallel Database Systems 3 (1995) 119-153.

[20] G. Giblin and R. Lam, Programming workflow applications with Domino (R&D Publications, 2000).

[21] P.W.P. J. Grefen, J. Vonk and P.M.G. Apers, Global transaction support for workflow management systems:
from formal specification to practical implementation, VLDB Journal 10(4) (2001) 316-333.

[22] K.J. Hammond, Explaining and repairing plans that fail, Artificial Intelligence 45 (1990) 173-228.
25

[23] IABG, Reference manuals of ProMInanD (IABG Company, Munich, 1999).

[24] N.R. Jennings, P. Faratin, T.J. Norman, P. O'Brien and B. Odgers, Autonomous agents for business process
management, International Journal of Applied Artificial Intelligence 14 (2) (2000) 145-189.

[25] E. Kafeza and K. Karlapalem, Temporally constrained workflows, in: Proc. ICSC 1999, Lecture Notes in
Computer Science, Vol. 1749 (Springer, Berlin, 1999) 246-255.

[26] M. Kifer, G. Lausen and J. Wu, Logical foundations of object-oriented and frame-based languages, Journal
of the ACM 42 (1995) 741-843.

[27] B. Kiepuszewski, A.H.M. ter Hofstede, C. Bussler, On structured workflow modelling. Proc. CAiSE'2000,
Lecture Notes in Computer Science, Vol. 1789 (Springer, Berlin): 431-445.

[28] M. Klein and C. Dellarocas, A knowledge-based approach to handling exceptions in workflow systems, Jour-
nal of Computer-Supported Collaborative Work 9(3/4) (2000) 399-412.

[29] A. Lazcano, H. Schuldt, G. Alonso and H.-J. Schek, WISE: process based e-commerce, IEEE Data Engineer-
ing Bulletin 24(1) (2000) 46-51.

[30] C. Liu and R. Conradi, Automatic replanning of task networks for process model evolution in EPOS, in: Proc.
ESEC’93 (1993) 434–450.

[31] L. Liu and C. Pu, Methodical restructuring of complex workflow activities, in: Proc. ICDE 1998 (IEEE Com-
puter Society Press, 1998) 342-350.

[32] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent systems (Springer, Berlin, 1992).

[33] O. Marjanovic and M.E. Orlowska, On modeling and verification of temporal constraints in production work-
flows, Knowledge and Information Systems 1 (1999) 157-192.

[34] I. Motakis and C. Zaniolo, Temporal aggregation in active database rule, in: Proc. SIGMOD 1997, SIGMOD
Record 26(2) (1997) 440-451.

[35] R. Müller, Event-oriented dynamic adaptation of workflows, Ph..D. Thesis, University of Leipzig, 2002.

[36] R. Müller and B. Heller, A petri net-based model for knowledge-based workflows in distributed cancer ther-
apy, in: Proc. EDBT’98 Workshop on Workflow Management Systems (1998) 91-99.

[37] R. Müller and E. Rahm, Dealing with logical failures for collaborating workflows, in: Proc. CoopIS 2000,
Lecture Notes in Computer Science, Vol. 1901 (Springer, Berlin, 2000) 210-223.

[38] K. Myers, Towards a framework for continuous planning and execution, in: Proc. of the AAAI Symposium
on Distributed Continual Planning, (1998).

[39] K. Nagi, J. Nims and P.C. Lockemann, Transactional support for cooperation in multiagent-based information
systems, in: Proc. vertIS2001 (2001) 177-191.

[40] N. Paton, ed., Active rules in database systems (Springer, 1999).

[41] M. Reichert and P. Dadam, ADEPTFLEX - supporting dynamic changes of workflows without losing control,
Journal of Intelligent Information Systems 10 (1998) 93-129.

[42] Remedy Corporation, Action request system 4.0 reference manuals (Remedy Corporation, 2000).

[43] S.W. Sadiq, W. Sadiq and M.E. Orlowska, Pockets of flexibility in workflow specification, in: Proc. ER 2001,
Lecture Notes in Computer Science, Vol. 2224 (Springer, 2001) 513-526.

[44] A. Sheth, K. Kochut et al., Supporting state-wide immunization tracking using multi-paradigm workflow
technology, in: Proc. VLDB 1996 (Morgan Kaufmann, 1996) 263-273.

[45] M.P. Singh and M.N. Huhns, Automating workflows for service order processing, integrating AI and database
technologies, IEEE Expert 9(5) (1994).

[46] W. de Vries, F.S. de Boer, W. van der Hoek and J.-J. Ch. Meyer, A truly concurrent model for interacting
agents, in: Proc. PRIMA 2001, Lecture Notes in Computer Science, Vol. 2132 (Springer, 2001) 16-30.

[47] H. Wächter and A. Reuter, The ConTract model, in: A.K. Elmagarmid, ed., Database Transaction Models for
Advanced Applications (Morgan Kaufmann, 1992) 219-263.

[48] D. Worah and A. Sheth, Transactions in transactional workflows, in: S. Jajodia and L. Kerschberg, eds., Ad-
vanced Transaction Models and Architectures (Kluwer, 1997) 3-34.

[49] T. Zhou, L. Liu and C. Pu, TAM: a system for dynamic transactional activity management, in: Proc. SIGMOD
Conference 1999 (1999) 571-573.
26

Robert Müller received his doctoral degree on a dissertation on workflow management
from the University of Leipzig, Germany, in 2002. From 1994 to 1996, he was a research
scientist at the University Hospital of Mainz at the Department of Medical Informatics.
Since 1996, he has been working at the Department of Computer Science, Database
group, of the University of Leipzig, Germany. In the summer term 2003, he holds a dep-
uty professorship for databases at the Department of Computer Science of the University
of Munich. His current research topics include workflow management, data integration,
and bioinformatics.

Ulrike Greiner received her diploma in computer science from the University of
Leipzig, Germany, in 2000. Since then, she has been a research scientist at the Depart-
ment of Computer Science, Database group, of the University of Leipzig, Her current
research topics include workflow management and e-services.

Erhard Rahm received his Ph.D. degree in Computer Science from University of Kai-
serlautern, Germany, in 1988. From 1988 to 1989, he has been a visiting scientist at the
IBM T.J. Watson Research Center, Hawthorne, NY, USA. Being an assistant professor at
the Department of Computer Science, University of Kaiserslautern from 1989 to 1994, he
received his habilitation degree in Computer Science in 1993 (habilitation thesis on
"Architecture of high-performance transaction systems"). Since 1994, he is a full profes-
sor for Computer Science and the head of the Database group at the University of
Leipzig, Germany. His current research topics include XML data management, adaptive
workflow management, metadata management, web usage mining, data warehouses, and
bioinformatics.
27

