Exploring Changes in Life Science Ontologies with OnEX

Michael Hartung¹, Toralf Kirsten¹,³, Anika Groß¹, Erhard Rahm¹,²
¹ Interdisciplinary Centre for Bioinformatics, University of Leipzig
² Department of Computer Science, University of Leipzig
³ Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig
http://www.izbi.de
http://dbs.uni-leipzig.de
http://imise.uni-leipzig.de

Motivation

Increasing number of evolving life science ontologies:
- Causes: new insights and experimental results, revision of existing knowledge
- Result: ontologies need to incorporate changed knowledge → ontology versions that are only valid in specific time periods

Goals:
- Quantitative evolution analysis of life science ontologies
 - Ontologies in general and their parts, e.g., concepts and relationships
 - Long term evolution analysis (> 2 years)
- Answering of open questions concerning ontology evolution
 - What are the typical changes in ontologies and how often do they occur?
 - How stable (stable?) are ontologies?
 - Which ontologies are currently highly developed or reside in a final state?
 - How does a single ontology evolve over time?

Online system for ad-hoc evolution analysis
- Intuitive and easy-to-use interface for accessing / browsing analysis results

OnEX Application – http://www.izbi.de/onex

Two Main Workflows:
- Evolution Trend Workflow
 - Evolution analysis on ontology level
 - Trend charts for concepts and relationships
 - Evolution details – added, deleted, obsolete and fused concepts per version change
- Concept Evolution Workflow
 - Search in specific or across all ontologies
 - Evolution analysis on concept level – attributes and relationships of a concept

Current Content:
- Ontologies of different life science fields, e.g., proteomics, anatomy, phenotype, biomedical chemistry and cancer research
- Approx. 520 versions of 16 life science ontologies accessible

Future Work
- Measures for assessing ontology stability by utilization of evolution information
- Discovery of “Hot / Cold Topics” in an ontology by
 - Exploring changes in sub graphs of an ontology
 - Studying changes in annotations to ontology concepts
- Inclusion of structural changes
 - Changes in the semantic neighborhood of a concept, e.g., parents and children
 - Changes in paths of a concept

Example:
GO:000705956
“blood coagulation” path changes
[2004.05 ; 2008.12]

Printed by Universitätsrechenzentrum Leipzig