
Write Once, Run Anywhere – A Survey of Mobile Runtime Environments

Sören Blom, Matthias Book, Volker Gruhn, Ruslan Hrushchak, André Köhler
Applied Telematics/e-Business Group, Dept. of Computer Science, University of Leipzig

Klostergasse 3, 04109 Leipzig, Germany
{blom, book, gruhn, hrushchak, koehler}@ebus.informatik.uni-leipzig.de

Abstract

The hype surrounding Web 2.0 and technologies such as
AJAX shows: The future of distributed application devel-
opment lies in Rich Internet Applications (RIAs), which are
based on highly distributed components and characterized
by the intensive use of communication networks, complex
interaction patterns and advanced GUI capabilities. As ser-
vice providers begin to tap into the mobile market by ex-
tending the reach of their established e-commerce systems
to mobile devices, a core challenge is the choice of a run-
time environment and middleware that adapts well to the
existing architecture, yet is a safe investment for the years
to come. This paper surveys the current state and the fu-
ture of runtime environments suitable for developing RIAs
for mobile clients.

1. Introduction

“Write once, run anywhere” – this slogan was introduced
with the Java programming language ten years ago, the idea
being to implement an application only once and then be
able to run it on any platform, independently of its oper-
ating system. From today’s perspective, Java was a great
success. However, application infrastructures and runtime
environments have changed significantly since then.

Current developments as well as recent experiences with
mobile applications lead us to the assumption that the fu-
ture of application development lies in Rich Internet Appli-
cations (RIA). The term “Internet application” emphasizes
the fact that future applications will be based on highly dis-
tributed components and are characterized by the intensive
use of communication networks. Software will be mashed
up with third-party components and services at runtime,
creating completely new applications ad hoc. The term
“rich” refers to the fact that applications will support com-
plex interaction patterns and advanced graphical user inter-
face (GUI) capabilities.

Furthermore, application usage scenarios are also chang-

ing radically. Especially e-commerce applications on mo-
bile devices will become increasingly important. But mo-
bility causes some major concerns for application develop-
ers: a wide variety of devices to support, unstable network
connections, limited bandwidth, high latency, security is-
sues and many more challenges need to be considered.

Thus, manufacturers and resellers of mobile devices
must decide how strongly the application developer should
be supported or constrained by the software pre-installed on
the devices. They must define which operating system and
additional runtime environment components should be pro-
vided, and how much influence the application developer
should have on this configuration. On the other hand, ap-
plication developers must choose a suitable technology for
implementing their application that is compatible with tar-
get devices, highly flexible, and supports the development
of state-of-the-art GUIs.

Considering this, an interesting question is which run-
time environments will be available in the future for run-
ning mobile software clients, supporting the “write once,
run anywhere” paradigm, providing state-of-the-art GUIs
and interaction capabilities, as well as solving or masking
known mobility problems (distribution, connectivity, per-
formance, reliability, and many more). In order to support
this decision process, this paper provides an overview of
current and future technologies positioned to address these
issues. In the following section, we identify different dis-
tribution patterns supported by different runtime environ-
ments, and then discuss various runtime environment tech-
nologies in detail (Sect. 2). After summing up our findings,
we discuss middleware addressing typical challenges found
in the development of mobile applications (Sect. 3). We
conclude with an evaluation of the presented technologies,
and an outlook on their future use (Sect. 4).

2. Mobile Runtime Environment Classification

For the purpose of the following discussion, we define
a runtime environment as the set of components that need
to be present on a client in order to run applications im-



Back-End 

Services

Operating 

System

Runtime 

Environment

GUI

Logic

GUI

Definition

Java EE

OS / 

APIs

Native Java ME
.NET

Compact
AJAX

Adobe 

Flex

Open

Laszlo
Silverlight

Java EE
CGI/PHP/

.NET/Java

CGI/PHP/ 

.NET/Java

CGI/PHP/

.NET/Java

Java ME 

Runtime

.NET

Compact

Runtime

HTML 

Pages

XmlHttp

Request

Flash 

Plug-in

AJAX/

Flash/

Silverlight

Silverlight

Plug-in

B
ro

w
s

e
r

Fat Client Applications

Traditional 

Web Apps Rich Internet Applications

XHTML

Java

Script

XHTML MXML LZX XAML

Java

Script

Java

Script
LZX .NET

s
y
n

c
h

r.
 

c
o

m
m

.

S
e

rv
e

r
C

li
e

n
t

a
s
y
n

c
h
r.

 

c
o

m
m

.

Figure 1. Mobile Runtime Environment Classification

plemented using a certain technology. Figure 1 presents a
classification of the major players in the field of mobile run-
time environments. As the figure shows, we can distinguish
several classes of applications by the kind of runtime envi-
ronment they require. We will give a short overview of these
classes here, and then present the individual technologies in
the subsequent sections.

Fat client applications are applications that are first
downloaded and installed on the client device. The appli-
cation then runs locally on the device. The client (i.e. the
mobile device) is capable of some processing and poten-
tially even limited persistent storage (caching). Installed
applications may be implemented directly on the device’s
operating system as native applications, or on a generic run-
time environment such as Java ME or .NET Compact. From
a technical point of view, they are bound to a certain tech-
nology and put a fixed memory footprint on the client, but
do not need a permanent network connection.

In contrast, web-based applications do not require any
(or only lightweight) downloads, but can be accessed just
like a web site. They form a special class of web applica-
tions insofar as they need to take into account the limitations
that are unique to mobile devices, such as small screen size.

Traditional web applications communicate with the
server using the familiar request-response interaction
paradigm of the hypertext transfer protocol (HTTP) and
the display features supported by the hypertext markup lan-
guage (HTML). Recently, these technologies have been
adapted with the aim to provide a richer, more responsive
user experience that is similar to desktop-based applica-
tions. These Rich Internet Applications (RIAs) are based on

technologies that provide (at least simulated) asynchronous
client/server communication, improved usability and porta-
bility. They are characterized by the following aspects [1]:

1. RIAs are executed within a particular runtime environ-
ment, i.e. a software infrastructure required for the ex-
ecution of the application that may offer base services
such as GUI rendering, security, data and communica-
tions management. Typically, the runtime environment
must be installed as a browser plug-in on the client.

2. The layout of user interfaces in RIAs is described us-
ing declarative languages, while the functionality of
the interface (i.e. the interaction with the user) is im-
plemented in a scripting language.

3. The RIA’s business logic and back-end services are
typically implemented remotely on a central server.
This way, clients only need to handle immediate user
interaction, but can refer to the server for all heavy-
weight processing and data management.

In the following subsections, we will discuss the most
prevalent technologies in more detail.

2.1. Native Applications

Technically, the most straightforward way of developing
a mobile application is by implementing it directly on the
basis of the device’s operating system (OS). Major products
in this area are PalmOS, which still has a significant market
share in the PDA market; Windows CE, which is targeted to



a number of embedded device classes as diverse as PDAs,
automotive terminals and smart phones; and Symbian OS,
which has had a strong focus on telephony features from its
conception and comes in different “series” targeting differ-
ent handset classes. The LiMo Foundation, a consortium of
device manufacturers and network operators, has recently
begun efforts to deploy Linux-based operating systems on
mobile phones [7]. Similar plans are being pursued since
quite some time by the Mobile Linux Initiative (MLI) of the
Linux Foundation (formerly a working group of the OSDL
consortium) [12].

Native applications are executable without the need for a
particular runtime environment, and potentially run faster
as they can directly access native features of the device
through the application programming interface (API) of the
operating system, but may also pose security risks for both
the device and the application.

More central to the aim of our discussion, however, is
the question of the “write once, run anywhere” potential of
native applications. Since they need to be compiled for a
particular OS, they are typically not as portable as applica-
tions built for a more generic runtime environment. In par-
ticular, different mobile OS may use different paradigms to
achieve similar tasks such as display control, file manage-
ment, multi-threading etc., some of which may even be en-
tirely unsupported on other devices. However, more recent
OS developments such as Android (an open platform for
mobile devices forming a complete software stack includ-
ing an operating sysstem, middleware and key applications
[3]) may ameliorate this issue somewhat, as they specifi-
cally aim to provide the flexibility for making applications
available across a wide spectrum of devices.

2.2. Java ME / .NET Compact

Sun Microsystems’ Java platform has long been the
prime example for “write once, run anywhere” runtime en-
vironments. The Java Platform, Micro Edition (Java ME) is
a runtime environment tailored to the special features and
restrictions of mobile devices. Microsoft’s .NET Compact
framework, a subset of the full .NET framework also geared
specifically to mobile devices, has a very similar aim. Since
both solutions are conceptually related, the following dis-
cussion can be generalized for either framework.

Due to the power and memory limitations of mobile de-
vices, Java ME provides only the essential libraries and vir-
tual machine capabilities [15, 16]. Applications developed
using this technology are deployed as so-called MIDlets,
which require (like all Java-based programs) a Java Virtual
Machine (JVM, or just VM) as their runtime environment.

While Java ME benefits from its relationship to the desk-
top and server editions of the Java platform and thus tech-
nically allows the reuse of code fragments and developer

skills, its portability is characterized by the challenge of
striking a balance between catering to the lowest common
denominator of all mobile devices, or tapping the potential
of different device classes’ features. This is not necessarily
a fault of the VM, but a consequence of the diverse range of
capabilities (such as display resolutions) offered by devices.
As such, developers may find it difficult to realize the “write
once, run anywhere” ideal in practice [17].

On the desktop and server platforms, Java has been noto-
rious for comparably slow execution speed. On mobile plat-
forms, where a highly responsive user interface is especially
important, there are ongoing attempts to boost performance
by compiling Java bytecode for execution in hardware (a
survey of approaches can be found in [20]). Most recent is
Sun’s JavaFX Mobile platform [6], a Java-based operation
and application environment based on a Linux OS that is
explicitly positioned for the development of RIAs.

In contrast to most other runtime environments discussed
in this paper, Java ME has the benefit of being independent
of a permanent network connection, as all necessary logic
can be deployed on the client device. As such, it is well-
suited for rather isolated, compact applications whose pur-
pose does not hinge on a permanent network connection.
However, for applications that rely heavily on remote re-
sources or content, and thus require a permanent network
connection by virtue of their application domain anyway,
Java ME cannot keep up with the flexibility and small foot-
print that the runtime environments for RIAs offer. As the
continuing success of the Web 2.0 paradigm shows, tightly
network-integrated applications are quickly becoming the
norm. It is therefore to be expected that RIA technologies
will become more suitable for the client, although Java tech-
nology will certainly remain a strong player on the servers
that power network-intensive applications.

2.3. AJAX

Since a few years, interest in a new class of dynamic web
applications has surged, largely fueled by the Web 2.0 hype:
By using a combination of established web-based technolo-
gies, developers are creating applications with a look and
feel that resembles desktop-based interaction patterns much
more than the usual page-centric paradigm. Collectively
termed AJAX (Asynchronous JavaScript and XML) [19],
these technologies effectively hide the request-response
communication taking place between client and server, and
instead present users with a self-contained, highly respon-
sive interface that allows them to manipulate and interact
with the content directly.

To achieve this, AJAX applications rely on a num-
ber of prerequisites. To circumvent the interactive limita-
tions of HTTP, AJAX applications employ fair amounts of
JavaScript to control the behavior of the user interface and



implement minor application tasks. This presentation logic
communicates with the server by exchanging HTTP re-
quests that are extended over long periods of time to achieve
the illusion of asynchronous communication.

The technologies that jointly constitute what may be
called the “runtime environment” for AJAX applications are
meanwhile incorporated in all major web browsers. Expe-
riences with running AJAX applications on mobile phones
are still quite limited – while technically feasible on suf-
ficiently equipped smart phones, it may be a challenge to
carry the usability of AJAX applications (which tend to
make excessive use of the direct manipulation paradigm)
over to mobile phones with their limited display and input
capabilities. On the other hand, the iPhone’s multi-touch
display is a prime example of the usability potential inherent
in direct manipulation interfaces – if device manufacturers
are willing to give up the traditional ten-button/two-softkey
input paradigm.

Regarding future developments, it seems likely that
AJAX will continue to enjoy high popularity among de-
velopers and end-users. Its major advantage over other ap-
proaches is the dependency on just a very basic set of tech-
nologies that are built into any modern web browser, so it
requires zero installation. Therefore, it comes closest to the
“write once, run anywhere” vision – although it must be
noted that the implementations of different web browsers
contain enough subtle differences to make the development
of complex portable AJAX applications a non-trivial chal-
lenge. The independence from a dedicated runtime environ-
ment (other than the standard web browser) makes AJAX
especially attractive for mobile devices, as it does not intro-
duce a persistent memory footprint of its own, and it can
be executed in a controlled environment that is unlikely to
expose the handset or network to serious threats.

2.4. Adobe Flash / Flash Lite

Adobe Flash (formerly Macromedia Flash) is a popu-
lar proprietary technology for the development of multime-
dia content that has been around for a long time by now.
Flash content can be authored using the commercial devel-
opment tool Adobe Flash CS 3, which includes Adobe Flash
Video Encoder for the production of highly compressed
video clips that have recently become very popular on the
web. The contents and GUI description of a Flash applica-
tion are stored in SWF format, a vector-based graphics and
animation format. The application and presentation logic is
implemented in ActionScript [2]. The runtime environment
for Flash applications is the Flash Player, which is executed
within a web browser. Through its combination of media
content with programming logic, Flash is especially suited
for the multi-medial representation of complex processes.
With the help of ActionScript, it is possible to implement

online games, multimedia tutorials, and A/V streaming.
For mobile devices, the Flash Lite technology has been

derived from the basic Adobe Flash, and optimized to
achieve a more lightweight runtime environment in terms of
file size, memory footprint and performance requirements
[8]. A disadvantage of Flash technology may be that its
authoring tools are more geared towards designers than de-
velopers, and that the file format is proprietary. However,
the multimedia capabilities and its installed base are virtu-
ally unparalleled, with many popular Web 2.0 applications
using Flash technology. In the mobile world, Flash Lite is
also quite well established [4].

2.5. Adobe Flex

Adobe Flex is a development framework that strives to
make the traditionally designer-centric Flash technology
more accessible to software developers by enabling them
to build RIAs based on Flash technology. A Flex applica-
tion is developed using the programming language MXML
for the description of the user interface, and ActionScript
for the implementation of the client-side logic. The Flex
compiler will then translate this code into Flash bytecode
that can be executed by any Flash runtime environment.

Flex can be especially attractive as a front-end for com-
plex information systems, where the business logic can be
implemented using Java EE on the server, which commu-
nicates with the Flex front-end through the so-called Flex
LifeCycle Dataservice.

The use of Flex offers the advantage that the implemen-
tation of the presentation logic on the client allows for a
highly responsive user interface, while the server-side busi-
ness logic has easy access to back-end systems. However, it
may be perceived as a disadvantage that the compiled Flash
application needs to be downloaded by clients prior to use,
and that a Flash Version 9 plug-in must already be installed
on the client. The future relevance of the technology re-
mains to be seen – a beneficial factor may be Adobe’s de-
cision to make Flex available as open source software from
version 3 onwards.

2.6. Microsoft Silverlight

Silverlight [11] is Microsoft’s attempt to introduce a
browser extension into the market that shall provide the ca-
pabilities of the Windows Presentation Foundation (WPF)
[13] to arbitrary platforms. The Mono Open Source Initia-
tive is working on a port of Silverlight (code-named Moon-
light) to Linux [9].

Silverlight consists of a browser plug-in which also in-
cludes a runtime environment for .NET (the .NET Frame-
work for Silverlight) in version 1.1. Using the Sil-
verlight technology, WPF user interfaces can be realized



as RIAs, which would enable large-scale reuse of appli-
cation paradigms know from the Windows world. GUIs
are described declaratively using the open and standardized
XAML language, while different programming languages
can be used to implement the GUI logic. Client-server
communication is realized using JavaScript (similar to the
AJAX approach); from version 1.1, limited .NET support
for web services is also available. Since all GUI code is
executed on the server and all communication is conducted
across web services, there are no prerequisites as to which
server platform should be employed.

Since Silverlight is still a young technology, disadvan-
tages are its relative immaturity and sparse installed base
among end-users. While Silverlight support is still low in
the mobile realm, Microsoft is planning to provide native
support under Windows Mobile.

2.7. OpenLaszlo

OpenLaszlo [10] is another platform for the creation of
Rich Internet Applications. The technology is freely avail-
able as open source software under the Common Public Li-
cense. The architecture is similar to Adobe Flex in that
it does not require a runtime environment of its own, but
employs existing runtime technologies: The GUI descrip-
tion and logic are encoded in the XML-based LZX format,
which is translated by a compiler into Flash bytecode or
DHTML. Either of these representations can be presented
in a browser by clients. In addition, it is possible to gen-
erate applications for other runtime environments such as
AJAX or Silverlight.

Benefits of OpenLaszlo applications are the use of an
open, declarative language, which offers a great selection of
standard GUI components, and the possibility to integrate it
with server-side business logic implemented in Java. How-
ever, developers need to be aware of potential restrictions
imposed by different target platforms that the OpenLaszlo
application may be compiled to. Still, OpenLaszlo is attrac-
tive for its support of different target runtime environments.

3. Middleware for Mobile Application Support

Runtime environments for mobile applications, and
especially technologies for RIAs, have the potential to
open up a large universe of information to users through
lightweight user interfaces. However, their network depen-
dence makes them prone to temporary losses of connectiv-
ity, which may lead to anything from erratic application be-
haviour to loss or corruption of back-end data.

To ameliorate these problems that typically plague mo-
bile applications, a number of middleware solutions exist
that decouple the client- and server-side processing logic

from the network by providing transparent caching and syn-
chronization. In Fig. 1, these middleware implementations
would be deployed on a client layer just below the web
browser, where they can transparently manage the cooper-
ation with remote components and handle communications
with the server.

The recently-introduced Google Gears framework pro-
vides a mechanism for continuous execution of AJAX-
based applications even under unstable network conditions
[5]. It serves as a data management layer between the client-
side application UI and the client’s network layer. This
data management layer comprises a connectivity switch,
caching/synching logic and local database. When the net-
work connection is lost, the connectivity switch will reroute
all read/write operations from the application UI to the local
database, which should be able to answer most requests for
data, and can cache all data updates. Once the connectivity
has been restored, the local database is synchronized with
the server, and the regular connected operation resumes.
The effectiveness of Google Gears’ masking of connection
losses depends heavily on the application domain and its
reliance on external real-time information.

For more heavyweight mobile applications, a number of
middleware solutions exist that support disconnected oper-
ation, caching/replication, and conflict resolution. Among
the most interesting products are XMIDDLE and OSGi, two
Java-based middleware implementations.

The XMIDDLE project [18] provides a data sharing mid-
dleware that allows caching and replication of data. Its data
structure is represented as an XML-based document object
model (DOM). XMIDDLE regards disconnection as usual
in mobile environments, and therefore allows reconciliation
among mobile clients that do not need to be connected to a
central host. This mechanism makes it suitable for ad hoc
networking models. However, XMIDDLE is solely con-
cerned with the replication of data, but not of executable
components.

The Open Services Gateway Initiative (OSGi) standard
defines a small layer that allows multiple Java-based com-
ponents to efficiently cooperate in a single Java VM. It
provides mechanisms for remote component and depen-
dency management, component life-cycle handling, as well
as loading, running, updating and removing components.
However, it does not provide support for data reconciliation
after concurrent changes.

As a final example, the MobCo middleware [14] cur-
rently developed by the Applied Telematics/e-Business
Group at the University of Leipzig in cooperation with
Deutsche Telekom Laboratories strives to increase appli-
cation availability and ubiquitous usage scenarios for mo-
bile clients. MobCo offers a middleware and framework for
the development of components that are able to run both on
the server and the mobile client, but whose actual execution



location is determined at runtime. As the middleware is
context-aware (regarding mobile hardware, network situa-
tion and application status), components are able to migrate
from server to client or vice versa, depending on where they
can experience better performance or increase system avail-
ability (in situations where the mobile client needs to switch
to offline mode). This is combined with a persistence layer
that is able to store and retrieve data from either local or
remote locations transparently to the application. The opti-
mal execution location for components will be determined
through simulation, which will enable derivation and evalu-
ation of component migration strategies. With such flexibil-
ity in the application’s architecture, the MobCo middleware
will allow distributed applications to cope much better with
the heterogeneous and ever-changing conditions (in terms
of network infrastructure, hardware, etc.) of mobile soft-
ware, and thereby expand the number of contexts in which
an application can successfully be run without having to
write it more than once.

4. Conclusion

Our comparison of runtime environments shows that the
future of mobile application development lies in Rich In-
ternet Applications, which are based on highly distributed
components and characterized by the intensive use of com-
munication networks, complex interaction patterns and ad-
vanced GUI capabilities. In contrast, fat client applications
can make a more efficient use of system resources and de-
pend less on a permanent network connection. However,
they support the “write once, run anywhere” paradigm only
to a much lesser degree, as their closeness to the underlying
system causes distribution and compatibility issues.

The more promising way for mobile devices thus seems
to be reliance on the above-mentioned RIA technologies.
AJAX is a prominent representative of this approach, as the
fast-growing amount of commercial applications with this
basis shows. From a software process perspective, Open-
Laszlo shows what the future of Rich Internet Application
development may look like: an open, declarative language
that enables the generation of GUIs for different runtime en-
vironments, a great selection of standard GUI components,
and the opportunity to smoothly integrate it with server-side
business logic.

Finally, it is important to consider emerging specific
middleware products for use in mobile environments. They
are solving the typical mobility problems, which are of par-
ticular relevance when developing applications for demand-
ing businesses use cases. In combination, open and highly
flexible technologies for lightweight GUI development as
well as highly specialized middleware products will be the
crucial tools for developing the mobile Rich Internet Appli-
cations of tomorrow.

5. Acknowledgments

The Applied Telematics/e-Business Group at the Univer-
sity of Leipzig is endowed by Deutsche Telekom AG.

References

[1] Duhl, J.: Rich Internet Applications. IDC White Pa-
per, 2003. http://www.adobe.com/platform/
whitepapers/idc_impact_of_rias.pdf.

[2] ActionScript, Flash Developer Center, Adobe Systems Inc.,
2007. http://www.adobe.com/devnet/flash/
actionscript.html.

[3] Android - An Open Handset Alliance Project, 2007. http:
//code.google.com/android.

[4] Flash-Enabled Mobile Devices, Adobe Systems Inc., 2007.
http://www.adobe.com/mobile/supported_
devices/.

[5] Google Gears API Developer’s Guide (Beta) – Architec-
ture. Google, Inc., 2007. http://code.google.com/
apis/gears/architecture.html.

[6] JavaFX. Sun Microsystems, Inc., 2007. http://www.
sun.com/software/javafx/.

[7] LiMo Foundation, 2007. https://www.
limofoundation.org.

[8] Mobile and Devices Developer Center, Adobe Sys-
tems Inc., 2007. http://www.adobe.com/devnet/
devices/flashlite.html.

[9] Moonlight - Mono-based implementation of Silverlight,
Mono Project, 2007. http://www.mono-project.
com/Moonlight.

[10] OpenLaszlo, Laszlo Systems, Inc., 2007. http://www.
openlaszlo.org.

[11] Silverlight, Microsoft Corp., 2007. http:
//silverlight.net.

[12] The Linux Foundation: Mobile Linux., 2007.
http://www.linux-foundation.org/en/
Mobile_Linux.

[13] Windows Presentation Foundation (WPF) community, Mi-
crosoft Corp., 2007. http://windowsclient.net.

[14] V. Gruhn and C. Schäfer. From Mobile Business Pro-
cesses to Mobile Information Systems. Software Architec-
ture, pages 296–299, 2007.

[15] S. Helal. Pervasive Java. IEEE Pervasive Computing,
01(1):82–85, 2002.

[16] S. Helal. Pervasive Java, Part II. IEEE Pervasive Computing,
01(2):85–89, 2002.

[17] D. S. Kochnev and A. A. Terekhov. Surviving Java for Mo-
biles. IEEE Pervasive Computing, 02(2):90–95, 2003.

[18] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich.
XMIDDLE: A Data-Sharing Middleware for Mobile Com-
puting. Wireless Personal Communications, 21(1):77–103,
2002.

[19] L. D. Paulson. Building Rich Web Applications with Ajax.
Computer, 38(10):14–17, 2005.

[20] T. B. Preußer, M. Zabel, and P. Reichel. The SHAP Mi-
croarchitecture and Java Virtual Machine. Technical Report
Tech. Rep. TUD-FI07-02, Fakultät Informatik, Technische
Universität Dresden, April 2007.


