
Gateway Adaptive Pacing for TCP across Multihop
Wireless Networks and the Internet*

Sherif M. ElRakabawy, Alexander Klemm, and Christoph Lindemann
University of Leipzig

Department of Computer Science
Augustusplatz 10-11

04109 Leipzig Germany

http://rvs.informatik.uni-leipzig.de/

ABSTRACT
In this paper, we introduce an effective congestion control scheme
for TCP over hybrid wireless/wired networks comprising a
multihop wireless IEEE 802.11 network and the wired Internet. We
propose an adaptive pacing scheme at the Internet gateway for
wired-to-wireless TCP flows. Furthermore, we analyze the causes
for the unfairness of oncoming TCP flows and propose a scheme to
throttle aggressive wired-to-wireless TCP flows at the Internet
gateway to achieve nearly optimal fairness. Thus, we denote the
introduced congestion control scheme TCP with Gateway Adaptive
Pacing (TCP-GAP). For wireless-to-wired flows, we propose an
adaptive pacing scheme at the TCP sender. In contrast to previous
work, TCP-GAP does not impose any control traffic overhead for
achieving fairness among active TCP flows. Moreover, TCP-GAP
can be incrementally deployed because it does not require any
modifications of TCP in the wired part of the network and is fully
TCP-compatible. Extensive simulations using ns-2 show that TCP-
GAP is highly responsive to varying traffic conditions, provides
nearly optimal fairness in all scenarios and achieves up to 42%
more goodput than TCP NewReno.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General – data

communications.

General Terms: Algorithms, Performance, Design.

Keywords: Wireless network protocols, Ad hoc networks,
Performance evaluation, TCP congestion control for hybrid
wireless/wired networks.

1 INTRODUCTION
Multihop wireless networks can effectively be utilized to

“opportunistically” extend the range of wireless LANs and for the
rapidly emerging wireless mesh networks [3]. Common Internet
applications such as Web browsing, e-mail and file transfer over
such hybrid wireless/wired networks require TCP as underlying
protocol for reliable data transfer. A key problem for TCP over
hybrid wireless/wired networks lies in the different characteristics

of multihop wireless networks and the wired Internet: in multihop
wireless networks most losses experienced by TCP are due to
packet drops at the IEEE 802.11 link layer of intermediate nodes.
Hidden terminal and exposed terminal effects are the reason for
these packet drops in multihop networks [11]. In contrast, in the
Internet almost all packet losses are due to buffer overflows at
routers.

One solution for this problem lies in splitting the TCP
connection at the node interfacing the wired and wireless part of the
network, denoted as the Internet gateway. In such a split-connection
approach, a specialized transport protocol like ATP [15] may run in
the wireless part whereas the wired part uses standard TCP, e.g.
TCP NewReno. However, a straightforward split-connection
approach does not preserve the end-to-end semantics of TCP and
requires complicated handover procedures in case of mobility [4].
Another solution lies in employing TCP NewReno in hybrid
wireless/wired networks and performing modifications in all mobile
devices of the wireless network, either on the link layer such as link
layer RED [11] or on the network layer such as neighborhood RED
[17]. These approaches retain the end-to-end semantics of TCP,
though such an approach cannot be incrementally deployed since it
requires modifications on all wireless devices.

In this paper, we introduce an effective congestion control
scheme for TCP over hybrid wireless/wired networks comprising a
multihop wireless IEEE 802.11 network and the wired Internet.
Important classes of such networks constitute wireless mesh
networks comprising mesh clients and mesh routers connected to
the Internet as well as ad hoc networked mobile devices (laptops,
PDAs, etc.) as opportunistic extensions to the Internet. For the
effective operation of TCP over such hybrid networks, we propose
to distinguish the direction of the TCP flow: For wired-to-wireless
TCP flows, we introduce an adaptive pacing scheme at the Internet
gateway. For wireless-to-wired flows, building upon [9], we
propose an adaptive pacing scheme at the TCP sender. Furthermore,
we analyze the causes for the unfairness of oncoming TCP flows in
multihop wireless networks where both wired-to-wireless as well as
wireless-to-wired TCP flows pass through the Internet gateway.
Such unfairness was previously observed in [16] and [18].
Subsequently, we show how to throttle aggressive wired-to-wireless
TCP flows at the Internet gateway to achieve nearly optimal fairness
for such scenarios. Thus, we denote the introduced congestion
control scheme TCP with Gateway Adaptive Pacing (TCP-GAP). In
contrast to previous work [12], [17], TCP-GAP does not impose any
control traffic overhead for achieving fairness among active TCP
flows. Moreover, TCP-GAP can be incrementally deployed, since it
does not require any modifications of TCP in the wired part of the
network. TCP-GAP is also fully TCP-compatible and preserves
TCP-friendliness because TCP-GAP does not allow more packets to
be transmitted than the current TCP window size permits.

* This work was funded in part by the German Research Council (DFG)
under Grant Li-645/12-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’06, October 2-6, 2006, Torremolinos, Malaga, Spain.
Copyright 2006 ACM 1-59593-477-4/06/0010…$5.00.

We evaluate both the steady-state as well as the transient
behavior of TCP-GAP using ns-2 simulation [10] with IEEE
802.11b, where we deploy scenarios describing different node
topologies. The results show that TCP-GAP significantly improves
both fairness and end-to-end goodput in hybrid wireless/wired
networks. In fact, TCP-GAP provides excellent fairness in almost
all scenarios and achieves up to 42% more goodput than TCP
NewReno. In this paper, we consider scenarios with FTP-like
traffic, where TCP flows are backlogged. In a further simulation
study not included due to space limitations, we also consider
scenarios with HTTP-like traffic which show that TCP-GAP even
achieves up to 70% more goodput than TCP NewReno.

The remainder of this paper is organized as follows. Section 2
summarizes related work on TCP for hybrid wireless/wired
networks and wireless mesh networks. Section 3 specifies the
considered class of wireless/wired networks, for which TCP-GAP is
designed. In Section 4, we introduce the congestion control scheme
of TCP-GAP and present pseudo code to outline its implementation.
A comprehensive performance study of TCP-GAP versus TCP
NewReno is presented in Section 5. Finally, concluding remarks are
given.

2 RELATED WORK
Several TCP enhancements (e.g. [9], [11], [17]) and new

transport protocols such as ATP [15] were proposed for multihop
wireless networks. However, only little work focused so far on
improving fairness and performance of TCP over hybrid
wireless/wired networks comprising a multihop wireless IEEE
802.11 network and the Internet.

In [9], we introduced TCP with Adaptive Pacing (TCP-AP) for
multihop wireless networks without connection to the wired
Internet. TCP-AP implements rate-based packet transmissions
within the TCP congestion window. We showed how a TCP sender
could adapt its transmission rate close to the optimum using an
estimate of the four-hop propagation delay and the coefficient of
variation of recently measured round-trip times.

Consistent with [9], we propose an adaptive pacing scheme at
the TCP sender. Contrary to [9], we consider hybrid wireless/wired
networks which possess different characteristics than pure multihop
wireless networks and require novel approaches for improving TCP
performance. Furthermore, we propose an effective solution for the
unfairness problem between oncoming TCP flows spanning the
wireless and wired domains of the hybrid network.

Yang et al. [18] proposed a pacing scheme at the IP layer to
improve TCP fairness in hybrid wireless/wired networks. They
derived the pacing rate by the minimum transmission delay
observed for this node, the most recent transmission delay and a
random delay. Their scheme throttles TCP flows and prevents TCP
senders from transmitting too aggressively against competing flows.
However, the derivation of the pacing rate in [18] is static and
cannot adapt to changing network conditions; i.e., may
unnecessarily throttle TCP flows. Furthermore, this approach does
not distinguish between different TCP flows passing through the
same wireless node.

In contrast to [18], TCP-GAP employs adaptive pacing rather
than static pacing. In fact, TCP-GAP continuously determines its
pacing rate by measuring the four-hop propagation delay of TCP
packets and the contention on the network path. Thus, TCP-GAP
does not lead to unnecessary goodput degradation if there is no
contention between active flows. Furthermore, we also evaluate a
considerably larger number and more realistic network topologies
than [18]. Beyond [18], we show how to achieve fairness for
oncoming TCP flows over a hybrid wireless/wired network.

Gambiroza et al. [12] studied TCP performance and fairness in
multihop wireless networks comprising numerous wireless relay
nodes (there called Transit Access Points, TAPs) and a connection
to the wired Internet. They introduced TAP-fairness to characterize
the idealized goodput and fairness objective for such networks and
proposed a distributed link layer algorithm for achieving TAP-
fairness among active TCP flows. TAP-fairness is tailored to
wireless mesh networks and differs from both max-min fairness and
proportional fairness. The distributed link layer algorithm for
achieving TAP-fairness requires to periodically propagate the
offered load and link capacities among all TAPs resulting in a
significant amount of control traffic.

TCP-GAP constitutes a modification on the transport layer
rather than modification on the link layer as [12]. TCP-GAP
employs an adaptive pacing scheme at wireless TCP senders and the
Internet gateway using an effective estimation of the four-hop
propagation delay and the contention on the network path rather
than measuring offered load and estimating the link capacity at each
wireless relay node as [12]. In contrast to [12], TCP-GAP does not
require any control traffic for achieving fairness among active TCP
flows, though; we consider max-min fairness of TCP flows rather
than TAP-fairness.

Mascolo et al. [13] proposed a sender-side bandwidth
estimation technique for TCP over cellular mobile networks denoted
as TCP Westwood to distinguish between packet losses due to
buffer overflow and due to wireless losses. Akan et al. [2] proposed
an adaptive transport layer suite for the next-generation wireless
Internet, which deploys an adaptive congestion control method in
order to account for the characteristics of the different wireless
environments. In contrast to [2] and [13], we consider hybrid
wireless/wired networks, in which the wireless part comprises of a
multihop IEEE 802.11 network. Moreover, TCP-GAP aims at
reducing performance degradation and improving fairness due to
hidden and exposed terminals rather than at helping TCP to
distinguish between packet losses due to buffer overflows and
wireless losses.

3 CONSIDERED CLASS OF NETWORKS
We consider IEEE 802.11 multihop wireless networks which

are connected through one or several fixed gateway nodes to the
wired Internet. These gateway nodes are denoted as Internet
gateways. Each Internet gateway has at least two network
interfaces. One of them is a wireless IEEE 802.11 interface
operating in ad hoc mode. The wireless subnet can be considered as
an independent network running AODV [14] or other routing
protocols such as ETX [7] or ETT [8] as its own routing protocol.
Figure 1 illustrates the considered class of wireless/wired networks.
Note that the network architecture illustrated in Figure 1 can be
considered both as an opportunistic extension to the Internet with
(negligible) pedestrian mobility and as an unplanned, single-radio
wireless mesh network (e.g. a community network), in which some
mesh routers have Internet connection.

In order to simplify the analysis of the impact of the hidden and
exposed terminal effects [11], we mostly consider regular network
topologies where the distance between the wireless nodes is 200m.
In fact, the hidden terminal problem can even occur to a larger
extend in topologies with irregular node placement. This is due to
the fact that the ideal case with inter-node distances of 200 meters
(given a wireless transmission range of 250 meters) roughly
minimizes the number of hops necessary for a given spatial distance
to an Internet gateway. With irregular node placement, the number
of hops to the Internet gateway would be potentially larger resulting
in even more hidden terminals. Thus, our setup constitutes a kind of

Smart
Phone

Server

Internet

gateway

Server

Server

Internet

Router

Smart
Phone

Laptop

Community
Mesh Node

Community

Mesh Node

Community
Mesh Node

Community

Mesh Node

Community

Mesh Node

Community

Mesh Node

Figure 1. Targeted network architecture: Ad-hoc extension to the Internet

or unplanned, single-radio wireless mesh networks

lower bound for the number of hidden terminals. Nevertheless, we
also consider a random topology with irregular node placement in
order to verify the applicability of our approach in such
environments.

Conventional ad hoc routing protocols such as AODV [14] use
the minimum hop count as routing metric. For wireless mesh
networks, novel routing metrics like the expected transmission
count (ETX) [7] and the expected transmission time (ETT) [8] have
been proposed. These routing protocols can achieve a higher
capacity in wireless mesh networks due to finding higher quality
routes than routing protocols like AODV. Nevertheless, since
choosing another route from source to destination cannot totally
prevent hidden terminals in multihop wireless networks, these
specialized routing protocols are complementary to improvements
of TCP. Thus, such routing protocols tailored to wireless mesh
networks may well be combined with TCP improvements such as
TCP-GAP.

4 THE TCP GATEWAY ADAPTIVE

 PACING SCHEME

4.1 Motivation and Rationale of Gateway Adaptive

Pacing
To improve TCP fairness and goodput for TCP connections

across multihop IEEE 802.11 and wired networks, we propose to
employ a rate-based packet scheduling within the TCP congestion
window in the wireless domain while preserving the traditional TCP
variant (i.e. TCP NewReno) in the wired Internet. Thus, this
approach decouples the wireless part of the hybrid network from the
wired part while preserving the end-to-end semantics of TCP. We
achieve this transparent decoupling by adding some transport layer
functionality to the IP layer at the Internet gateway.

In contrast to TCP pacing [1], the adaptive pacing approach sets
the transmission rate adaptively based on the spatial reuse constraint
of multihop IEEE 802.11 networks and the contention on the
network path of the connection. The spatial reuse constraint [11] is
accounted by considering the four-hop propagation delay (FHD) of
TCP packets. FHD describes the time elapsed between transmitting
a TCP packet by the TCP source node and receiving the packet at
the node which lies four hops apart from the source node along the
path to the destination. This measure can be estimated by measuring
the round trip times (RTT) of TCP packets as well as the number of
hops of the network path. The contention on the network path of the
TCP connection can be estimated by measuring the variation of
recent RTT samples using the coefficient of variation covRTT. In
summary, the adaptive transmission rate R computed by the TCP
sender is given by [9]:

�

1

(1 2)
RTT

R
FHD cov

=
⋅ +

 (1)

where

 � � (1)oldFHD FHD FHDα α= ⋅ + − ⋅ (2)
with smoothing factor α = 0.7.

Note that the adaptive pacing algorithm aims at improving TCP
performance in the wireless domain and thus has to be implemented
at the entry point of a TCP connection into the wireless network.
That is, for connections spanning across wireless and wired
networks we distinguish the two cases:
(1) the TCP source is a wireless device and the TCP destination

resides in the wired Internet; denoted as wireless-to-wired
flows.

(2) the TCP source resides in the wired Internet and the TCP
destination is a wireless device; denoted as wired-to-wireless
flows.

In case (1) we deploy adaptive pacing at the TCP source,
whereas in case (2) we deploy adaptive pacing on IP layer at the
Internet gateway. In the following subsections we will discuss the
proposed adaptive pacing scheme in detail with respect to cases (1)
and (2).

4.2 Gateway Adaptive Pacing for Wireless-to-

Wired Flows
We consider the case where a wireless node constitutes the TCP

source and a host in the wired domain constitutes the TCP
destination. Figure 2 illustrates such scenario where an FTP flow
runs from the wireless node A over multiple intermediate hops
through the Internet gateway IG to the wired host B. Throughout
this paper, wireless relay nodes are denoted by RL<i> whereas
wired routers are denoted by RT<i>.

To improve TCP performance in the wireless part, we employ
adaptive pacing at the wireless TCP source A. Note that
conventionally measured RTT values describe the complete round-
trip time of the packets crossing both the wireless and the wired
parts of the network. However, for deriving proper estimates for
FHD and covRTT, we only need the packet RTT in the wireless part,
i.e. the time taken for a TCP packet to be forwarded from A to IG
plus the time taken for the corresponding TCP ACK packet to be
forwarded from IG to A. The round-trip time in the wireless part,
which we denote as RTTwireless, is calculated as follows: Inspecting
the transport layer TCP header, the Internet gateway IG maintains
the packet sequence numbers of each TCP flow running between
the wireless part and the wired part. When a TCP data packet with
an arbitrary sequence number x is transmitted by A and reaches IG,
the packet is forwarded to the wired destination and the forwarding
time of the packet is recorded in a variable T1 at IG. When the
packet reaches the TCP destination B, gets acknowledged, and the
corresponding TCP ACK arrives at IG, the arrival time of the TCP
ACK packet is recorded in T2. The time difference between T1 and
T2 is calculated and saved in the variable RTTwired, which describes
the packet RTT in the wired domain. Subsequently, IG writes
RTTwired into the options field of the TCP ACK header and forwards
it towards A. When A receives the TCP ACK packet, it reads
RTTwired from the header and subtracts its value from the
conventional RTT value, getting RTTwireless as a final result.
Afterwards, the TCP sender uses RTTwireless to compute FHD and
covRTT with respect to the wireless domain. For ease of exposition in
(3) to (5), we assume that all wireless devices have the same
bandwidth b.

FTP
BRT2RT1

IG

A RL2RL1 RL3 RL4 RL5

FTP
BRT2RT1

IG

A RL2RL1 RL3 RL4 RL5
Figure 2. Wireless chain topology where A constitutes the wireless TCP

source and B constitutes the wired TCP destination

Given that

1

2
wireless data ACK

q

RTT s s
t

h b

+ 
= − 

 
 (3)

we get:

4 2data wireless data ACK

q

s RTT s s
FHD t

b h b

−   
= + = +   

   
 (4)

()
2

1

1

1

N i
wirelesswirelessi

RTT

wireless

RTT RTT
N -

cov =
RTT

=
−∑

 (5)

Table 1 summarizes the parameters for the Gateway Adaptive
Pacing scheme and their meaning. Note that h in Eqs. (3) and (4)
denotes the number of hops between A and IG, which can be
acquired from the routing protocol at IG. After computing FHD and
covRTT, the adaptive transmission rate is computed as given in Eq.
(1).

If wireless devices possess different bandwidths b1, b2,…, bn (i.e.
in a multi-rate mesh network), the individual bandwidths from
intermediate devices along the current path are needed. Such
information may be piggybacked to some TCP packets to prevent
extra control overhead. Subsequently, FHD can be determined by
considering the bandwidths b1, b2,…, bn of individual links rather
than the overall bandwidth b and appropriate summations.

4.3 Gateway Adaptive Pacing for Wired-to-Wireless

Flows
To prevent any modifications of TCP in the wired domain, we

choose to implement adaptive pacing on the Internet gateway,
keeping the entire procedure hidden to the TCP source in the wired
domain. Since the Internet gateway is essentially a network router,
the adaptive pacing scheme is implemented on the IP layer.
However, our approach is independent from the routing protocol
employed in the wireless ad hoc extension of the Internet or the
wireless mesh network.

Figure 3 illustrates the Gateway Adaptive Pacing procedure at
the Internet gateway. TCP data packets are received from the wired
domain through the wired interface and buffered in a FIFO queue
which we denote as the pacing queue. Packets buffered in the pacing
queue are then dequeued and transmitted rate-based through the
wireless interface according to the current transmission rate, which is
computed using Eqs. (1) to (5). Note that in the current case, h in
Eqs. (3) and (4) denotes the number of hops between the Internet
gateway and the wireless node constituting the TCP destination.
RTTwireless describes the time taken for a TCP data packet to be
forwarded from the Internet gateway to the wireless TCP destination
plus the time taken for the corresponding TCP ACK to be forwarded
from the wireless TCP destination to the Internet gateway. RTTwireless
is computed in a similar way as in Section 4.2. That is, the
transmission time of a TCP data packet x at the Internet gateway is
recorded in a variable T1, whereas the arrival time of the
corresponding TCP ACK at the Internet gateway is recorded in a

Table 1. Parameters for the Gateway Adaptive Pacing Scheme

Parameter Meaning

h Number of hops in wireless domain

b Bandwidth of the wireless interface

awndi Size of receiver advertized window for flow i

tq Average packet queuing delay per wireless node

sdata Size of TCP data packet

sACK Size of TCP ACK packet

RTT Entire round trip time of TCP packets

RTTwireless Round trip time of TCP packets in wireless domain

RTTwired Round trip time of TCP packets in wired domain

covRTT Coefficient of variation of RTT samples

FHD Current 4-hop propagation delay in wireless domain

�FHD Exponentially weighted moving average of FHD

variable T2. Subsequently, RTTwireless is calculated by simply
subtracting T1 from T2.

Such rate-based packet transmission has the advantage of
accounting for the deficiencies of IEEE 802.11, and thus improving
the overall performance of TCP flows crossing both the wireless and
wired domains. According to the number of wireless hops as well as
the current contention in the wireless domain, the transmission rate
can be adjusted for each flow separately in order to account for the
different environment-specific influences experienced by each single
flow. This is achieved by maintaining a flow-specific data structure
at the Internet gateway which maintains the specific variables for
each flow separately, e.g. packet sequence numbers, RTTwireless, h,
FHD as well as the current transmission rate R. Such flow-specific
consideration assigns each TCP flow running through the Internet
gateway a specific transmission rate, dependent on the contention
experienced by this flow. In Section 5 we will show that such
approach yields a significant performance improvement of both TCP
goodput and fairness.

Utilizing our approach, TCP flows can be uniquely identified at
the Internet gateway using the IP addresses and the port numbers of
the TCP source and destination nodes. Note that for each TCP flow i,
the Internet gateway has to provide at maximum a total of awndi free
packet buffer space in the pacing queue, where awndi denotes the
size of the receiver advertised window of flow i. That is, the wired
TCP source of flow i can never transmit more than awndi packets
back to back before waiting for a corresponding TCP ACK to arrive.

data x+1

Wired InterfacePacing QueueWireless Interface

data x+2 data x+3data x

ACK x-1

Buffer incoming TCP data packets in FIFO Queue

Dequeue & transmit pkts using current transmission rate

Set T1 = transmission time of data packet x

Buffer incoming TCP data packets in FIFO Queue

Dequeue & transmit pkts using current transmission rate

Set T1 = transmission time of data packet x

Set T2 = arrival time of ACK x

Set RTT
wireless

= T2 – T1

Calculate transmission rate

using RTT
wireless

Set T2 = arrival time of ACK x

Set RTT
wireless

= T2 – T1

Calculate transmission rate

using RTT
wireless

ACK x-2

IG

data x+1

Wired InterfacePacing QueueWireless Interface

data x+2 data x+3data x

ACK x-1

Buffer incoming TCP data packets in FIFO Queue

Dequeue & transmit pkts using current transmission rate

Set T1 = transmission time of data packet x

Buffer incoming TCP data packets in FIFO Queue

Dequeue & transmit pkts using current transmission rate

Set T1 = transmission time of data packet x

Set T2 = arrival time of ACK x

Set RTT
wireless

= T2 – T1

Calculate transmission rate

using RTT
wireless

Set T2 = arrival time of ACK x

Set RTT
wireless

= T2 – T1

Calculate transmission rate

using RTT
wireless

ACK x-2

IG

Figure 3. The adaptive pacing procedure at the Internet gateway

Hence, we only need a constant number of free buffer space
which equals awndi for a flow i. Accordingly, the total buffer space
which should be provided at the Internet gateway is given by

1

n

ii
awnd

=∑ packets, where n denotes the number of active TCP

flows running through the Internet gateway. That is, for a flow with a
TCP data packet size of 1460 bytes and a receiver advertised window
of 64 packets, we only need 187 Kbytes of buffer space for caching
packets at the Internet gateway, which make up about 1.4 Mbytes for
15 flows. In order to avoid unnecessary buffer space occupation, we
also define two cases for deleting flow-specific queues and
information at the Internet gateway. The first case is if the Internet
gateway identifies a proper flow termination using the FIN-ACK
sequence by the TCP entities, whereas the second case is if a certain
timeout expires without receiving any packets for a given flow. Such
timeout interval can be set to a few minutes. In the unlikely case that
the buffer at the Internet gateway is completely occupied, pacing
would be disabled for new flows until old flows terminate.

Note that the adaptive pacing algorithm is not affected if the
delayed ACK option is used by the TCP receiver. The sole difference
is that the new pacing rate gets computed less frequent since only
every second TCP packet gets acknowledged by the TCP receiver. In
fact, the adaptive pacing scheme combined with the delayed ACK
option can significantly improve the goodput of TCP, as shown in
[9].

4.4 Achieving Fairness for Oncoming Flows
As we will show in Section 5, applying adaptive pacing on the

Internet gateway yields nearly optimal fairness between competing
TCP flows in all scenarios without oncoming flows. However, in
scenarios with two or more oncoming TCP flows where both wired-
to-wireless as well as wireless-to-wired TCP flows pass through the
Internet gateway, optimal fairness is not achieved. Consider for
example the network topology depicted in Figure 4. Here, two
parallel chains consisting of wireless nodes are connected to the
Internet by the Internet gateway IG. The transmission range of each
wireless node is 250m whereas both the interference range as well as
the carrier sensing range are 550m. The distance between both chains
is 400m. Thus, wireless nodes of opposite chains are within each
other’s interference range but out of each other’s transmission range.
Suppose there are two FTP transfers, the first (FTP1) running from
the wired node B as FTP source to the wireless node A1 as FTP
destination and the second (FTP2) running from the wireless node
A2 as FTP source to the wired node B as FTP destination.

Simulation results for this scenario presented in Section 5 show
that applying adaptive pacing on the Internet gateway significantly
improves TCP fairness compared to standard TCP NewReno.
However, FTP1 still achieves more goodput than FTP2. In order to
get deeper insight, we analyze the TCP packet drop rate on link layer
in the wireless domain. That is, we compute the number of TCP
packets (data and ACKs) dropped at each wireless link in order to get
insight on the state of the wireless link at each node. Table 2 shows
the results of this study. It is conspicuous that the link RL7→RL8 on
the lower chain experiences about 12 times more packet drops than
the link RL3→RL4 which has the same relative position on the
opposing upper chain. The same effect can be observed for the link
RL8→IG on the lower chain which suffers about 2.5 times more
packet drops than the corresponding link RL4→IG at the opposing
upper chain. This explains why FTP 2, which runs on the lower
chain, achieves less goodput than FTP 1. As we will explain in the
subsequent discussion, the higher drop rate on the links RL7→RL8
and RL8→IG compared to the links RL3→RL4 and RL4→RL8
mainly depends on the interaction between two effects, namely the

B

FTP 1

RT2RT1

FTP 2

RL1 RL2

RL8

RL4RL3

RL6RL5 RL7

A1

A2

IG400m
B

FTP 1

RT2RT1

FTP 2

RL1 RL2

RL8

RL4RL3

RL6RL5 RL7

A1

A2

IG400m

Figure 4. The two parallel chains topology

Table 2. Link layer packet drops for each wireless link in 1000 seconds
simulation time

A1→RL1 RL1→RL2 RL2→RL3 RL3→RL4 RL4→IG TCP

ACKs 8 146 112 12 40
A2→RL5 RL5→RL6 RL6→RL7 RL7→RL8 RL8→IG TCP

data 11 128 147 141 102

RL1→A1 RL2→RL1 RL3→RL2 RL4→RL3 IG→RL4 TCP

data 1 54 90 8 40
RL5→A2 RL6→RL5 RL7→RL6 RL8→RL7 IG→RL8 TCP

ACKs 7 118 127 50 14

different packet sizes of TCP data and TCP ACK packets and the
opposite directions of the flows.

Suppose RL7 wants to transmit a TCP data packet to RL8. Prior
to the actual data transmission, RL7 and RL8 conduct an RTS/CTS
handshake to avoid collisions with other transmissions. In case IG is
concurrently transmitting TCP data packets to RL4 at the same time,
then IG may constitute an exposed terminal for the transmission from
RL7 to RL8, since RL8 hears the RTS packets from IG and thus does
not respond with a CTS to RL7’s RTS packets. After seven
unsuccessful RTS attempts, RL7 drops the TCP data packet at link
layer. In an analogous situation where RL3 wishes to transmit a TCP
ACK packet to RL4, IG may constitute an exposed terminal for this
transmission in case IG is concurrently transmitting TCP ACK
packets to RL8. However, the difference between these two
situations is that TCP data packets are much larger than TCP ACK
packets and thus the probability for seven unsuccessful attempts for a
RTS/CTS handshake is by far smaller than the case with TCP data
packets. Furthermore, the loss of an ACK packet degrades TCP
goodput less than the loss of a data packet, since TCP ACKs are
cumulative, i.e. individual losses of ACKs can be overcome without
retransmissions.

A further cause for the different goodput of the two TCP flows
can be seen considering the transmission of TCP data packets from
RL3 to RL2. These transmissions cause hidden terminal collisions at
the receiving IG node, specifically for the transmission from RL8 to
IG. That is, in case RL8 is transmitting a TCP data packet to IG at
the same time when RL3 is transmitting a TCP data packet to RL2,
the transmission from RL8 to IG will be corrupted whereas the
transmission from RL3 to RL2 will succeed since RL2 lies beyond
the interference range of RL8. Given that both transmissions
incorporate large TCP data packets with relatively large transmission
times, these collisions have a relatively high probability. In the
analogous setting on the opposite chain, the transmission of TCP
ACK packets from RL7 to RL6 can cause a collision at IG if RL4 is
concurrently transmitting TCP ACK packets to IG at the same time.
However, due to the reasons stated above, these collisions are less
probable and thus cause less performance degradation than in the
case of TCP data packets. In summary, due to the different flow
directions and the different TCP packet sizes, FTP 1 takes advantage
over FTP 2, resulting in less goodput and non-optimal fairness.

To solve this fairness problem, we extend the transport layer
functionality added to the IP layer of the Internet gateway by
incorporating Goodput Control for all TCP flows passing the Internet

gateway. Goodput Control monitors the goodput of all TCP flows
passing through the gateway and aims at achieving optimal fairness
by throttling aggressive wired-to-wireless flows. That is, in case the
Internet gateway IG recognizes that the goodput ratio between the
goodput of a wired-to-wireless flow and the mean of the goodput of
all flows exceeds a certain threshold S, then IG periodically probes
the ability of the slower TCP flows to increase their goodput by
throttling the rate of the faster TCP flows down to the value of the
mean goodput. Note that since wired-to-wireless flows gain more
goodput than wireless-to-wired flows, this throttling can easily be
performed by adjusting the transmission rate of the Gateway
Adaptive Pacing algorithm. Throttling the fast TCP flows may result
in either:
(1) an increase of the goodput achieved by the slower flows in case

they contend with the fast flows, or
(2) no change in the goodput of the slower flows in case there is no

contention.
Considering case (1), the throttling is effective for improving

TCP fairness between competing flows, while in case (2), throttling
fast flows would not yield any benefit for slow flows, but would
rather unnecessarily decrease the goodput of the fast flows. Thus, in
case (2), the throttling is disabled. This way, fast flows are only
throttled in case they affect the goodput of slow flows, i.e. in case
both fast and slow flows share the same bottleneck. To maintain the
responsiveness of our approach to changing network conditions, we
continuously verify whether throttling is still necessary. This is done
by applying an aging algorithm to the throttling value, i.e., with
increasing time the degree of throttling decreases in order to account
to changing traffic conditions after which the throttling might be
unnecessary. Furthermore, whenever IG recognizes a termination of
a TCP flow, it resets all throttling-specific variables. In case the
unfairness still remains, it is handled during the next periodic
probing. As verified by our simulations, suitable values for the
throttling parameters are 5 seconds for the throttling interval as well
as 1.1 for the threshold S, i.e., a fast TCP flow may at maximum
achieve 10% more goodput than then mean goodput of all flows, or
else it gets temporarily throttled.

As we will show in Section 5, using this Goodput Control
algorithm, the fairness of competing TCP flows can be optimized
while avoiding any additional control traffic overhead or requiring
global knowledge about the network topology. Recall that our
approach is implemented at the Internet gateway only, which is not
affected by energy consumption issues and has sufficient processing
power and memory. Consider that the Goodput Control approach
only works for TCP flows passing the same Internet gateway.
Nevertheless, there might be network topologies in which similar
effects as described above cause unfairness between TCP flows
passing different Internet gateways. However, we argue that in
multihop extensions to the Internet or mesh networks, these scenarios
are rare since Internet gateways are typically located in substantial
distances. Otherwise, single-hop wireless Internet access would
rather be deployed than multihop wireless extensions of the Internet.
Thus, our solution is beneficial in almost all considered scenarios. In
the remainder of this paper, we denote our Gateway Adaptive Pacing
scheme including Goodput Control as TCP with Gateway Adaptive

Pacing (TCP-GAP).

4.5 Dealing with Handovers due to Mobility
In wireless mesh networks, there may be scenarios where the

TCP entities in the wireless domain constitute mobile devices which
move along multiple gateways. Due to the mobility in such
scenarios, a handover procedure has to be performed between the
Internet gateways by the routing layer. That is, as the mobile device

moves, it may find Internet gateways to which it has a shorter route
than the current Internet gateway.

The advantage of TCP-GAP in such scenarios is that it does not
require any exchanging of hard-state information about the TCP
connections between the Internet gateways. Using TCP-GAP,
Internet gateways only maintain soft-state information about TCP
connections which can be built up from scratch by new Internet
gateways after a handover procedure. Other approaches such as the
split connection approach [4] require complicated handover
procedures between Internet gateways as they maintain hard-state
information about TCP connections, which have to be transferred to
new Internet gateways.

In Section 5, we consider scenarios with a single Internet
gateway and no mobility. In a further simulation study not included
due to space limitations, we consider the case where the TCP entities
in the wireless domain constitute mobile devices which move along
multiple gateways with a pedestrian speed of max. 2 m/s. The study
shows that the handover procedure between multiple Internet
gateways does not affect the performance improvements gained by
TCP-GAP.

4.6 Pseudo Code for TCP-GAP
To provide intuition on how to implement TCP-GAP, we

provide pseudo code for the Gateway Adaptive Pacing scheme as
well as for the Goodput Control approach. The implementation
involves the wireless TCP sender as well as the Internet gateway.
Figure 5 outlines the functionality added to the TCP implementation
at the wireless TCP sender, whereas Figure 6 shows the functionality
which has to be added to the IP layer implementation at the Internet
gateway. Recall that these additions are independent of the applied
routing protocol as long as the number of hops to wireless nodes and
the bandwidth of the wireless interface are provided.

1 proc recv_pkt() {
2 foreach received TCP ACK do
3 read RTTwired from TCP header
4 set RTTwireless = RTT - RTTwired
5 calculate transmission rate using RTTwireless
6 done
7 }

Figure 5. Pseudo code for TCP-GAP implemented
at the wireless TCP sender

1 Global Variables (used to identify TCP flows):
2 seq: pkt sequence number
3 sip: source IP
4 dip: destination IP
5 sp: source port
6 dp: destination port
7 proc recv_pkt() {
8 if (packet type == TCP data) then
9 read [seq, sip, dip, sp, dp] out of packet header
10 switch (direction) {
11 case (wireless to wired):
12 set T1[seq, sip,dip,sp,dp] = current time
13 forward packet
14 case (wired to wireless):
15 buffer packet in Pacing Queue
 (no processing here, packets dequeued later)
16 }
17 else if (packet type == TCP ACK) then
18 read [seq, sip, dip, sp, dp] out of packet header
19 switch (direction) {
20 case (wireless to wired):
21 if (duplicated ACK) then
22 retransmit data pkt with sequence number
 (seq+1)
23 else

24 set [seq, sip, dip, sp, dp]
wirelessRTT = T2[seq, sip,dip,sp,dp] –

 T1[seq, sip,dip,sp,dp]
25 update transmission rate using
 [seq, sip, dip, sp, dp]

wirelessRTT

26 forward packet
27 endif
28 case (wired to wireless):
29 set T2[seq, sip,dip,sp,dp] = current time
30 set [seq, sip, dip, sp, dp]

wiredRTT = T2[seq, sip,dip,sp,dp] –
 T1[seq, sip,dip,sp,dp]
31 write [seq, sip, dip, sp, dp]

wiredRTT into TCP header of
 packet
32 forward packet
33 }
34 endif

35 proc dequeue_pacing_queue() {
36 comment: procedure called upon expiration of
 rate-based timer to dequeue pacing queue
37 dequeue TCP data packet (FIFO order)
38 set T1[seq, sip,dip,sp,dp] = current time
39 transmit packet through wireless interface
40 }

41 proc goodput_control() {
42 Local Variables:
43 interval: Probing interval (set to 5s in simulations)
44 G(i): Goodput achieved by a flow i
45 Gavg: Average goodput of all flows
46 S: Threshold which defines acceptable goodput
 deviation between oncoming flows (set to 1.1
 in simulations)
47 R(i): Current transmission rate of flow i

48 once every interval seconds do
49 foreach flow i do
50 set deviation(i) = G(i)/Gavg
51 if (deviation(i) > S and i is wired-to-wireless)
 then
52 throttle rate of flow i to Gavg
53 else if (throttling is on and no improvement for
 slow flows)
 then
54 cancel throttling of flow i
55 endif
56 done
57 if (a connection terminates or starts) then
58 reset all throttle-specific variables
59 cancel throttling of all flows
60 endif
61 perform aging by increasing rate of flow i to
 R(i) + 1.1 ∗ deviation(i)
62 done
63 }

Figure 6. Pseudo code for TCP-GAP implemented at the Internet gateway

5 PERFORMANCE EVALUATION

5.1 Simulation Environment
The simulation experiments in this paper are conducted using the

network simulator ns-2 [10]. In the wireless domain, the MAC layer
parameters of IEEE 802.11 are configured to provide a transmission
range of 250m and a carrier sensing range as well as an interference
range of 550m, as consistent with a Lucent WaveLan DSSS radio
interface. The transmission of each data packet on the MAC layer is
preceded by a Request-To-Send/Clear-To-Send (RTS/CTS)
handshake. We consider a wireless channel bandwidth of 11 Mbit/s
as supported by IEEE 802.11b and set the size of TCP data packets
to 1460 bytes. Unless otherwise stated, in the wireless domain of all
considered topologies, each node is 200 meters apart from each of its
adjacent nodes. As ad hoc routing protocol for packet routing in the
wireless domain we use AODV [14]. Unless otherwise stated, we set
the bandwidth of the full-duplex wired links to 10 Mbit/s and the
packet delay to 40ms.

In all experiments, except for experiments showing transient
behavior, we conduct steady-state simulations starting with an
initially idle system. In each run, we simulate TCP flows until 55.000
packets are successfully transmitted, and split the simulation output
in 11 batches of size 5.000 packets. The first batch is discarded as
initial transient. The considered performance measures are derived

 8000

 4000

 2000

 1000

 500
 10 9 8 7 6 5 4 3 2 1

G
o

o
d

p
u

t
[K

b
it

/s
]

Number of Wire le ss Hops

TCP-GAP
TCP NewReno

Figure 7. TCP goodput vs. wireless chain length for wireless-to-wired

flows

from the remaining 10 batches with 95% confidence intervals by the
batch means method.

5.2 Chain Topology
First we consider a chain topology as depicted in Figure 2 of

Section 4.2. In the first experiment, we define an FTP flow running
from the wireless node A to the wired host B, where we vary the
length of the wireless router-chain and plot the achieved goodput
accordingly. Figure 7 shows the goodput versus number of wireless
hops h of TCP-GAP as well as TCP NewReno. We observe that for
h < 4 where no hidden terminals are present, TCP NewReno
achieves slightly higher goodput than TCP-GAP. That is, the bursty
transmission of TCP NewReno gains a slight advantage over the
adaptive pacing of TCP-GAP, since the IEEE 802.11 MAC
scheduling prevents packet losses caused by hidden terminals for less
than four hops. However, in our simulation, we noticed that the
bursty traffic of TCP NewReno results in severe unfairness in
scenarios with multiple flows, even in topologies where no hidden
terminal is present. Therefore, instead of disabling the adaptive
pacing scheme for wireless routes with less than four hops, TCP-
GAP computes the transmission rate using the h-hop delay and
achieves best fairness results due to its adaptive pacing scheme. For
chains with h ≥ 4, we observe that TCP-GAP achieves up to 41%
more goodput than TCP NewReno due to the presence of the hidden
terminal problem. Such performance improvement is the result of the
consideration of the IEEE 802.11 spatial reuse constraint in the
computation of the TCP-GAP adaptive pacing rate.

In the second experiment, we consider the opposite case where
the wired host B constitutes the TCP sender and the wireless node A
constitutes the TCP destination. Figure 8 shows that for h < 4, both
TCP variants achieve similar goodput with a maximum of 3% value
deviation. For h ≥ 4, the adaptive rate-based transmission of TCP-
GAP effectively decreases network congestion and achieves up to
42% more goodput than TCP NewReno.

5.3 Parallel Chains Topology
As a second topology, we consider two parallel chains as shown

in Figure 4 of Section 4.4. Consistent with the previous scenario, we
define three wired nodes while we set two FTP flows running
between the wireless and wired domains. We consider three different
traffic scenarios, where each case corresponds to a specific
adjustment of the flow directions. That is, first we consider the case
where both FTP flows start at the nodes A1 and A2 as TCP sources
and end at the wired host B as TCP destination. Second we consider
the opposite direction where both FTP flows start at B and end at A1
and A2, respectively. In the final scenario we examine mixed flow
directions where FTP 1 runs from A1 as source to B as destination
and FTP 2 runs from B as source to A2 as destination. Figures 9 to

 8000

 4000

 2000

 1000

 500
 10 9 8 7 6 5 4 3 2 1

G
o

o
d

p
u

t
[K

b
it

/s
]

Number of Wire le ss Hops

TCP-GAP
TCP NewReno

Figure 8. TCP goodput vs. wireless chain length for wired-to-wireless

flows
11 show the results of this simulation, where each figure corresponds
to a specific adjustment of the flow directions. The figures plot the
individual goodput of each FTP flow as well as the aggregate
goodput, which is defined as the sum of the goodput achieved by
both flows.

In Figures 9 and 10 we see that TCP-GAP significantly
outperforms TCP NewReno both in terms of fairness and goodput.
Using TCP NewReno, FTP 1 occupies the entire available bandwidth
at cost of FTP 2, while both flows share the available bandwidth
equally using TCP-GAP. In fact, TCP-GAP also achieves a higher
aggregate goodput than TCP NewReno. Note that approaches which
aim to improve TCP performance by exchanging control information
between wireless nodes would not work in such scenarios since no
direct communication is possible between nodes belonging to one
chain and nodes belonging to the opposite chain due to the 400m
inter-chain distance.

 0

 200

 400

 600

 800

 1000

 1200

TCP Ne wRe no TCP-GAP

G
o

o
d

p
u

t
[K

b
it

/s
]

FTP 1 (wireless to wired)
FTP 2 (wireless to wired)

Aggregate Goodput

Figure 9. Goodput in parallel chains topology for wireless-to-wired flows

 0

 200

 400

 600

 800

 1000

 1200

TCP Ne wRe no TCP-GAP

G
o

o
d

p
u

t
[K

b
it

/s
]

FTP 1 (wired to wireless)
FTP 2 (wired to wireless)

Aggregate Goodput

Figure 10. Goodput in parallel chains topology for wired-to-wireless flows

 0

 200

 400

 600

 800

 1000

 1200

TCP-GAP
w/o Goodput Control

TCP NewRe no TCP-GAP

G
o

o
d

p
u

t
[K

b
it

/s
]

FTP 1 (wired to wireless)
FTP 2 (wireless to wired)

Aggregate Goodput

Figure 11. Goodput in parallel chains topology for oncoming flows

Figure 11 plots the results for the case with mixed flow direction
where FTP 1 runs from B to A1 and FTP 2 runs from A2 to B.

We observe that TCP-GAP without Goodput Control achieves much
better fairness than TCP NewReno, although the fairness is not
optimal like in the previous two cases. Such unfairness between
oncoming flows was also observed in [16] and [18] and further
discussed in Section 4. In Figure 11 we observe that, due to the
Goodput Control scheme, TCP-GAP achieves optimal fairness with
almost no sacrifice of the aggregate goodput. This shows that the
Goodput Control scheme constitutes an effective method for
achieving optimal fairness between oncoming flows.

Responsiveness

In order to evaluate how quickly a specific TCP variant responds
to changing traffic conditions in the network, we conduct a further
simulation using the parallel chains topology. We define two FTP
flows which run from the wired domain to the wireless domain, i.e.
FTP 1 starts at B and ends at A1 whereas FTP 2 starts at B and ends
at A2. While FTP 1 runs from the beginning of the simulation until
the end, FTP 2 runs from the beginning of the simulation and stops at
time N1=130s, then restarts again at time N2=160s where it
continues until the end. We are interested in studying how FTP 1
reacts upon the stopping and starting of FTP 2. Figures 12 and 13
plot the goodput of both flows versus simulation time for TCP-GAP
and TCP NewReno, respectively. Considering TCP-GAP, we
observe that FTP 1 quickly takes advantage of the entire available
bandwidth when FTP 2 stops, while both flows share the bandwidth
fairly when they content for the channel. As for TCP NewReno, we
see that FTP 1 occupies the entire available bandwidth at cost of FTP
2, which completely starves. We conclude that TCP-GAP not only
provides superior fairness compared to TCP NewReno but also
quickly responds to changing network conditions.

 0

 200

 400

 600

 800

 1000

 1200

 100 120 140 160 180 200

G
o

o
d

p
u

t
[K

b
it

/s
]

Simulation Time [s]

FTP 1
FTP 2

Figure 12. Responsiveness of TCP-GAP

 0

 200

 400

 600

 800

 1000

 1200

 100 120 140 160 180 200

G
o

o
d

p
u

t
[K

b
it

/s
]

Simulation Time [s]

FTP 1
FTP 2

Figure 13. Responsiveness of TCP NewReno

In Section 5.3 we will show how this improved responsiveness
results in substantial improvement in aggregate goodput for short
TCP flows.

5.4 Cross Topology
As a third and more complex topology we consider a cross of

wireless nodes, where the Internet gateway IG is positioned at the
center of the cross as depicted in Figure 14. The wired domain
comprises seven wired hosts, which are depicted as diamonds. We
define four FTP flows and consider similar flow directions as for the
previous topology. That is, in case (1), which is depicted in Figure
14, all FTP flows run from the wireless to the wired domain with the
TCP source and destination entities (A1→B1), (A2→B2),
(A3→B3) and (A4→B4). In case (2), we consider the opposite
direction where the flows start in the wired and end in the wireless
domain, where the TCP entities are given by (B1→A1), (B2→A2),
(B3→A3) and (B4→A4). Finally, we consider the mixed case
where two FTP flows run from the wireless to the wired domain and
the other two flows run the other way round, given the TCP entities
(A1→B1), (B2→A2), (A3→B3) and (B4→A4).

Figures 15 to 17 show the results of this simulation. Consistent
with the previous results, the figures show that TCP-GAP
considerably outperforms TCP NewReno both in terms of fairness
and aggregate goodput. In fact, TCP-GAP achieves optimal fairness
between the competing flows in the first two cases. Consistent with
the mixed case of the previous simulation, in Figure 17, we notice
that for TCP-GAP without Goodput Control, the first two flows get
slightly less goodput than the other two flows. From this figure we
conclude that using Goodput Control yields optimal fairness

FTP 3IGFTP 1

B3

B1
B2

B4

FTP 2

FTP 4

A1

A2

RL1 RL2 RL3 RL4 RL5 RL6 A3

RL7

RL8

RL9

RL10

RL11

RL12

A4

RT3

RT2

RT1

FTP 3IGFTP 1

B3

B1
B2

B4

FTP 2

FTP 4

A1

A2

RL1 RL2 RL3 RL4 RL5 RL6 A3

RL7

RL8

RL9

RL10

RL11

RL12

A4

RT3

RT2

RT1

Figure 14. The cross topology

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

TCP Ne wRe no TCP-GAP

G
o

o
d

p
u

t
[K

b
it

/s
]

FTP 1 (wireless to wired)
FTP 2 (wireless to wired)
FTP 3 (wireless to wired)
FTP 4 (wireless to wired)

Aggregate Goodp ut

Figure 15. Goodput in cross topology for wireless-to-wired flows

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

TCP Ne wRe no TCP-GAP

G
o

o
d

p
u

t
[K

b
it

/s
]

FTP 1 (wired to wireless)
FTP 2 (wired to wireless)
FTP 3 (wired to wireless)
FTP 4 (wired to wireless)

Aggregate Goodp ut

Figure 16. Goodput in cross topology for wired-to-wireless flows

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

TCP-GAP
w/o Goodput Control

TCP Ne wRe no TCP-GAP

G
o
o

d
p

u
t

[K
b

it
/s

]

FTP 1 (wireless to wired)
FTP 2 (wireless to wired)
FTP 3 (wired to wireless)
FTP 4 (wired to wireless)

Aggregate Goodput

Figure 17. Goodput in cross topology for oncoming flow

between oncoming flows, even in cases where we have multiple
wireless-to-wired as well as wired-to-wireless flows.

5.5 Random Topology
As a final topology we consider a random topology of 120

wireless nodes uniformly distributed on a flat area of 2500m x
1000m. According to [5], all nodes in the wireless domain can
communicate with each other over one or more hops with probability
P=99.9%. Similar networks do already exist such as the MIT
Roofnet which builds up an unplanned IEEE 802.11b wireless mesh
network over an urban area of about four square kilometers [6]. We
define eight FTP flows with randomly chosen TCP source and
destination pairs, where FTP 1 to FTP 4 run from the wired to the
wireless domain and FTP 5 to FTP 8 run in the opposite direction.
The position of the Internet gateway is also randomly selected while
we define two routers and one host in the wired domain similar to the
wired nodes depicted in Figure 4. Thereby, the wired host B3
constitutes the TCP source for FTP 1 to FTP 4 and the TCP

 0

 100

 200

 300

 400

 500

 600

 700

 800

TCP Ne wRe no TCP-GAP

G
o

o
d

p
u

t
[K

b
it

/s
]

FTP 1 (wired to wireless)
FTP 2 (wired to wireless)
FTP 3 (wired to wireless)
FTP 4 (wired to wireless)
FTP 5 (wireless to wired)

FTP 6 (wireless to wired)
FTP 7 (wireless to wired)
FTP 8 (wireless to wired)

Aggregate Goodput

Figure 18. Goodput in random topology for oncoming flows running on

paths of different lengths

destination for FTP 5 to FTP 8. Opposed to previous experiments, in
this simulation TCP flows run on paths of different lengths.

Figure 18 shows that TCP-GAP achieves much better fairness
between the flows than TCP NewReno. Specifically, TCP NewReno
lets FTP 1 and FTP 4 almost completely starve while all flows get a
fraction of the available bandwidth using TCP-GAP. We notice that
TCP-GAP achieves slightly less aggregate goodput than TCP
NewReno due to the well known tradeoff between aggregate
goodput and fairness which is caused by the absence of optimal
scheduling of IEEE 802.11.

This problem is further discussed in [17]. Note that the different
wireless path lengths of the considered flows may have further
impact on the fairness between multiple flows. Such effects are not
further investigated in this paper and are subject to future work.

6 CONCLUSION
In this paper, we proposed an adaptive pacing scheme on the

Internet gateway for improving both goodput and fairness of TCP
flows in hybrid wireless/wired networks. Our approach, denoted as
TCP with Gateway Adaptive Pacing (TCP-GAP), accounts for the
different characteristics of the wireless and wired domains by
deploying rate-based congestion control for the wireless part of the
network at the Internet gateway. Furthermore, we gave insight on the
reasons of the unfairness in case of oncoming flows where both
wired-to-wireless as well as wireless-to-wired connections pass
through the Internet gateway. Subsequently, we introduced a
goodput control scheme at the Internet gateway in order to achieve
nearly optimal fairness for such scenarios.

We showed that nearly optimal fairness between multiple TCP
flows in hybrid wireless/wired networks can be achieved by solely
modifying the transport layer. Thus, opposed to [12] and [18], TCP-
GAP is easily deployable since it does neither require any
modifications of standard TCP in the wired domain nor
modifications on the link or network layers.

In future work, we are measuring the performance of TCP-GAP
in a real testbed.

7 REFERENCES
[1] A. Aggrawal, S. Savage, and T. Anderson, Understanding the

Performance of TCP Pacing, Proc. IEEE INFOCOM, Tel Aviv,
Israel, 2000.

[2] Ö. B. Akan and I. F. Akyildiz, ATL: An Adaptive Transport
Layer Suite for Next-Generation Wireless Internet, IEEE
Journal on Selected Areas in Communications, 22, 2004.

[3] I. F. Akyildiz, X. Wang, and W. Wang, Wireless Mesh
Networks: a survey, Computer Networks, 47, 2005.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, A
Comparison of Mechanisms for Improving TCP Performance
over Wireless Links, IEEE/ACM Transactions on Networking,
5, 1997.

[5] C. Bettstetter, On the Minimum Node Degree and Connectivity
of a Wireless Multihop Network, Proc. ACM MOBIHOC,
Lausanne, Switzerland, 2002.

[6] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, Architecture
and Evaluation of an Unplanned 802.11b Mesh Network, Proc.
ACM MOBICOM, Cologne, Germany, 2005.

[7] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, A High-
Throughput Path Metric for Multi-Hop Wireless Routing, Proc.
ACM MOBICOM, San Diego, CA, 2003.

[8] R. Draves, J. Padhye, and B. Zill, Routing in multi-radio, multi-
hop wireless mesh networks, Proc. ACM MOBICOM,
Philadelphia, PA, 2004.

[9] S. ElRakabawy, A. Klemm, and C. Lindemann, TCP with
Adaptive Pacing for Multihop Wireless Networks, Proc. ACM
MOBIHOC, Urbana-Champaign, IL, 2005.

[10] K. Fall and K. Varadhan (Ed.), The ns-2 Manual, Technical
Report, The VINT Project, UC Berkeley, LBL, USC/ISI and
Xerox PARC, 2005.

[11] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, The
Impact of Multihop Wireless Channel on TCP Throughput and
Loss, Proc. IEEE INFOCOM, San Francisco CA, 2003.

[12] V. Gambiroza, B. Sadeghi, and E. Knightly, End-to-End
Performance and Fairness in Multihop Wireless Backhaul
Networks, Proc. ACM MOBICOM, Philadelphia, PA, 2004.

[13] S. Mascolo, C. Casetti, M. Gerla, M. Sandidi, and R. Wang,
TCP Westwood: Bandwidth Estimation for Enhanced Transport
over Wireless Links, Proc. ACM MOBICOM, Rome, Italy,
2001.

[14] C. Perkins, E. Royer, and S. Das, Ad hoc On-Demand Distance
Vector (AODV) Routing, IETF RFC 3561, 2003.

[15] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R.
Sivakumar, ATP: A Reliable Transport Protocol for Ad Hoc
Networks, Proc. ACM MOBIHOC, Annapolis, MA, 2003.

[16] K. Xu, S. Bae, S. Lee, and M. Gerla, TCP Behavior across
Multihop Wireless Networks and the Wired Internet, Proc.
ACM WoWMoM, Atlanta, GA, 2002.

[17] K. Xu, M. Gerla, L. Qi, and Y. Shu, Enhancing TCP Fairness in
Ad Hoc Wireless Networks using Neighborhood RED, Proc.
ACM MOBICOM, San Diego CA, 2003.

[18] L. Yang, W. Seah, and Q. Yin, Improving Fairness among TCP
Flows crossing Wireless Ad Hoc and Wired Networks, Proc.
ACM MOBIHOC, Annapolis MD, 2003.

