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ABSTRACT
Summary: Unlike tRNAs and microRNAs, both classes of snoRNAs,
which direct two distinct types of chemical modifications of uracil
residues, have proved to be surprisingly difficult to find in genomic
sequences. Most computational approaches so far have explicitly
used the fact that snoRNAs predominantly target ribosomal RNAs
and spliceosomal RNAs. The target is specified by a short stretch of
sequence complementarity between the snoRNA and its target. This
sequence complementarity to known targets crucially contributes to
sensitivity and specificity of snoRNA gene finding algorithms.
The discovery of “orphan” snoRNAs, which either have no known tar-
get, or which target ordinary protein-coding mRNAs, however, begs
the question whether this class of “housekeeping” non-coding RNAs
is much more wide-spread and might have a diverse set of regulatory
functions. In order to approach this question, we present here a com-
bination of RNA secondary structure prediction and machine learning
that is designed to recognize the two major classes of snoRNAs, box
C/D and box H/ACA snoRNAs, among ncRNA candidate sequences.
The snoReport approach deliberately avoids any usage of target
information. We find that the combination of the conserved sequence
boxes and secondary structure constraints as a pre-filter with SVM
classifiers based on a small set of structural descriptors are sufficient
for a reliable identification of snoRNAs.
Tests of snoReport on data from several recent experimental sur-
veys show that the approach is feasible; the application to a data-
set from a large-scale comparative genomics survey for ncRNAs
suggests that there are likely hundreds of previously undescribed
“orphan” snoRNAs still hidden in the human genome.
Availability: The snoReport software is implemented in ANSI C.
The source code is available under the GNU Public License at http:
//www.bioinf.uni-leipzig.de/Software/snoReport.
Supplemental material is available at http://www.bioinf.

uni-leipzig.de/Publications/SUPPLEMENTS/07-015/
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1 INTRODUCTION
High through-put studies employing fundamentally different expe-
rimental approaches have demonstrated that a substantial fraction of
the transcriptional output of eukaryotic cells does not code for pro-
teins (Carninciet al., 2005; Chenget al., 2005; Bertoneet al., 2004).
These studies not only generated a plethora of data on poorlyunder-
stood novel genes but also led to a rapid increase in the number of
documented members of well-established structured RNA families.
Tools of comparative genomics, in particularRNAz (Washietlet al.,
2005b) andEvofold (Pedersenet al., 2006), furthermore demon-
strated that RNA secondary structure is under stabilizing selection
at thousands of loci in the genomes of higher eukaryotes. A signi-
ficant fraction of these loci are most likely independent non-coding
RNAs (Washietlet al., 2005a; Pedersenet al., 2006), albeit the over-
whelming majority of these computational predictions so far has
remained without functional annotation.

Non-protein-coding RNAs (ncRNAs) form a very heterogeneous
group of transcripts with diverse evolutionary origins andhistories.
Indeed, several classes of enigmatic small ncRNAs have beendis-
covered during the last year: piwi-related piRNAs (Lauet al., 2006;
Aravin et al., 2006), 21U-RNAs (Rubyet al., 2006), and three
classes of small ncRNAs associated with promoters and termini of
protein-coding genes (Kapranovet al., 2007). The classification and
annotation of both experimentally discovered and computationally
predicted RNAs thus have become an important topic in computa-
tional biology, reviewed e.g. by The Athanasius F. Bompfünewerer
RNA Consortium:et al. (2007).

Increased interest in ncRNAs in general has also motivated a
series of experimental studies in diverse organisms aimingat incre-
asing the set of documented members of the two best-understood
RNA classes: microRNAs and snoRNAs. Most of the recent experi-
mental approaches in this direction were assisted by bioinformatics
employed to predict candidates for experimental verification. So
far, however, of all classes of small RNAs, only tRNAs can be
detected reliabaly solely based on the genomic sequence with a
sensitivity and specificity that allows nearly perfect genome-wide
annotation without the need for comparative genomics approaches
(usingtRNAScan-SE (Lowe & Eddy, 1997)). A large array of
different approaches, reviewed e.g. in Yoon & De Micheli (2006),
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has recently been developed to detect microRNAs. The continuing
increase in the number of human microRNAs from one release ofthe
miRBase (Griffiths-Jones, 2004) to the next shows that none of the
existing tools can in practice find microRNA precursors withspeci-
ficity and sensitivity comparable to that oftRNAScan-SE. Despite
significant improvements in recent years, the tools for discovering
snoRNAs (Lowe & Eddy, 1999; Schattneret al., 2004; Edvardsson
et al., 2002) are even less reliable.

In fact, with the exception of a small number of evolutionarily
very well conserved RNAs — in particular rRNAs, tRNAs (Lowe
& Eddy, 1997), the U5 snRNA (Collinset al., 2004), RNAse P
and MRP (Piccinelliet al., 2005) — most ncRNAs are not only
hard to discoverde novoin large genomes, but they are also sur-
prisingly hard to recognize if presented without annotation. While
it is often impossible to use relatively faint sequence homologies
to find homologs of known RNAs in a complete genome, it can
be much easier torecognizethe very same sequences in the out-
put of genomic ncRNA screens, due to the enrichment of functional
RNAs by several orders of magnitude. Moreover, we found in
previous ncRNA screens based onRNAz (Washietlet al., 2005a;
Missalet al., 2005, 2006), that a comparison withRfam alignments
using structure-based methods such asinfernal (Nawrocki &
Eddy, 2007) identifies very fewRNAz hits that are not already reco-
gnizable by means ofblast. Thus, whilehomologsof known
sequences usually can be recognized reliably, determiningclass
membershipof novel examples is a much harder problem.

In this contribution, we introduce a combination of RNA secon-
dary structure prediction and machine-learning that is capable of
recognizing snoRNAs in single sequences. In contrast to pre-
vious methods for snoRNA recognition (with the exception of
snoSeeker (Yang et al., 2006)), we deliberately do not include
information on putative target sites within ribosomal or spliceoso-
mal RNAs although these additional constraints can dramatically
enhance the specificity (Lowe & Eddy, 1999; Schattneret al., 2004,
2006). Notably, an increasing number of orphan snoRNAs, which
lack antisense to rRNAs or snRNAs, has been experimentally iden-
tified from different eukaryotes, e.g. (Hüttenhoferet al., 2001,
2004; Huanget al., 2005). In particular, a subgroup of snoRNAs
is expressed in the mammalian brain and appears not to be invol-
ved in modification of rRNAs and snRNAs. Instead, some of these
snoRNAs target specific mRNAs and interfere with A-to-I editing,
see e.g. the work of Vitaliet al. (2005) and the recent review by
Rogelj (2006).

For microRNAs, we recently presented the machine learning
approach,RNAmicro, that has been designed specifically to anno-
tate genome-wide comparative genomics data (Hertel & Stadler,
2006): Based on about a dozen variables describing featuresof
sequence variation and consensus structure in a multiple sequence
alignment, a support vector machine (SVM) is trained to distinguish
between microRNA precursors and other types of hairpin-like struc-
tures. The observation that box H/ACA snoRNAs acted as decoys in
early versions ofRNAmicro’s SVM model suggested to use a simi-
lar approach, albeit with adapted sets of descriptors for snoRNA
recognition and a specific pre-filter based on predicted secondary
structures. Since the two sub-classes of snoRNAs, box C/D and
box H/ACA sequences are mutually unrelated in terms of sequence
and structure, Fig. 3,snoReport employs distinct models derived
from a similar collection of descriptors for them.

CD pos. samples 135
CD neg. samples 1770
HACA pos. samples 81
HACA neg. samples 89

Table 1. Training and test data. Positive examples correspond to theknown
box C/D and box H/ACA snoRNAs fromsnoRNABase that pass the initial
test for the presence of the sequence motifs and structural features. The
negative set consists of selected Rfam families that are notsnoRNAs (e.g.
snRNAs, RNase P, 5S rRNAs, tRNAs), as well as miRNAs taken from miR-
Base that pass the initial motif and structure filter. Some C/D snoRNAs also
show sequence motifs similar to H box and H/ACA also may show alow
scoring C and/or D box, due to the fact that the box motifs are PWM’s
and the matching algorithm also finds similar boxes - naturally with a lower
score. These sequences are included as negative examples ofbox H/ACA
snoRNAs, andvice versa.

2 MATERIALS AND METHODS

2.1 Data Sources
Since snoReport in essence implements a machine learning
method, positive and negative training sets play an essential role
for the performance of our approach. As is often the case in bioin-
formatic applications, the available positive datasets are relatively
small. We use here the collection of thesnoRNABase (Lestrade
& Weber, 2006), while other non-coding RNAs from theRfam
(Griffiths-Joneset al., 2005) andmiRBase (Griffiths-Jones, 2004)
and a set of random sequences serve as negative examples. Clusters
of sequences with substantial sequence homology are determined
usingblastclust (Altschul et al., 1990) with anE-value thres-
hold of 10

−3. From each cluster, only a single representative is
retained. In this way we avoid correlations between test andtrai-
ning sets in validation experiments. The total numbers of available
independent test and training sequences are summarized in Tab. 1.

Position specific weight matrices (PWMs) are used to repre-
sent the characteristic sequence motifs. These are extracted from
snoRNABase (Lestrade & Weber, 2006) using the web-version of
meme (Bailey & Elkan, 1994), see Fig. 1 for the resulting motifs.
We applysnoReport to sets of predicted and partially experimen-
tally verified C/D and H/ACA snoRNAs from the studies of (Lowe
& Eddy, 1999; Schattneret al., 2004; Huanget al., 2005; Zemann
et al., 2006; Yanget al., 2006) to assess the performance of our
approach.
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Fig. 1. Frequency plots of characteristic sequence motifs. Box ACAin
contrast is an exact sequence pattern. See supplemental material for cor-
responding position specific weight matrices.

2.2 Software Components
RNA structure prediction is performed using the current release
1.6 of the Vienna RNA Package (Hofacker et al., 1994;
Hofacker, 2003). PWMs are matched to the genomic sequence using
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Fig. 2. Definition of snoRNA boundaries with respect to the boxes found on
the input sequence. The specified regions are:d1
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pwmatch, a reimplementation (Mosiget al., 2006) of the algorithm
described in Kelet al. (2003). We uselibsvm 2.83 (Chang &
Lin, 2001) to implement the support vector machine. The program
snoReport is written in ANSI C and links these components.

2.3 ThesnoReport Workflow
The two major classes of snoRNAs, the C/D box and the H/ACA
box snoRNAs, can clearly be distinguished by characteristic
sequence motifs and structural features. A third class of snoRNAs,
the so-calledscaRNAs, often shows features of the two other clas-
ses combined within a single molecule. Our goal here is a toolthat
is able to distinguish snoRNAs from the rest of the modern “RNA
world”, and that in particular reliably recognize members of the two
major snoRNA classes. Both C/D box and H/ACA box snoRNAs are
distinguished by their characteristic secondary structures; naturally,
hence, we start with structure prediction.

In the prototypical structure of both classes, the characteristic
sequence boxes are located in unpaired regions. Since predicted
structures that are computed from a single sequence are rather unre-
liable, see e.g. Hofackeret al. (2002), we first map the conserved
sequence boxes to the input sequence. Pairs of boxes C and D, or H
and ACA boxes, respectively, that are located within a maximum
distance of 200 or 120nt, respectively, from each other serve as
seeds for a snoRNA candidate. Since the length of the sequence
influences the outcome of structure predictions, we estimate the
boundaries of the snoRNA as indicated in Fig.2.

Constrained secondary structures (Hofackeret al., 1994) are
then computed for all pairs of C and D, and H and ACA boxes,
respectively, that are within a maximal distance of 200 and 120nt
(indicated bydCD and dHACA, resp., in Fig. 2). In the case of
box C/D snoRNAs, the entire region between boxes C and D must
be unpaired, for H/ACA only the boxes themselves are prevented
from base pairing. The constraint folding algorithm as implemen-
ted in theVienna RNA Package is used for secondary structure
computation.

If, using the constraints described above, the sequence folds into
a prototypical snoRNA structure, the feature vector is computed
from this sequence/structure pair and passed to the corresponding
SVM. Both folding constraint and feature vector are of course diffe-
rent for box C/D and H/ACA snoRNAs. With an additional option,
the user can also scan the reversed complement of the sequence. In

order to keep memory requirements low, only positive results are
immediately written to an output file (there is also an optionto print
all results). A candidate is classified as positive, i.e., asputative
snoRNA candidate, if the SVM classification returns a classifica-
tion pSVM > 0.5. Candidates withpSVM > 0.9 are regarded as
high-scoring candidates.

The snoReport package additionally includes aperl script
which summarizes the output by extracting the best hit (based on
the resulting probability) from a group of predictions at overlapping
locations of the input string.

Box H/ACA snoRNAsBox ACA is located immediatelyafter the
last paired base of the second stem loop. Using the fact that both
boxes must be unpaired as a constraint, the secondary structure of
the sequence (truncated after ACA) is computed. The initialstruc-
ture test is passed if it forms a single stem-loop structure between
the H and the ACA boxand if there is a stem-loop structure pre-
ceding box H. Now the sequence is truncated again at the 5’ end
before the first base pair of this first stem-loop. As a cross-check,
the constrained structure is recomputed and the first stem-loop is
adjusted if necessary. Based on this predicted structure and the
truncated sequence, the following attributes are extracted for SVM
classification:

E Minimum free energy when foldingwithoutconstraint
Ec Minimum free energy when foldingwith constraint

Eavg Mean of the MFE
Estdv Standard deviation of the MFE

Ls5 Number of paired bases in 5’ stem
Ls3 Number of paired bases in 3’ stem
Ll5 Number of unpaired bases in 5’ hairpin loop
Ll3 Number of unpaired bases in 3’ hairpin loop

DH2I5 Distance from H box to1st unpaired base of1st interior
loop of 5’ stem

DA2I3 Distance from ACA box to1st unpaired base of1st interior
loop of 3’ stem

DHACA Distance from H to ACA box
GC GC content of the subsequence
σH pwmatch score of the H box

To provide bothE andEc helps to get an idea how much “effort”
is necessary to force the sequence into the requested structure or
if the sequence likes to fold into another more or less stablestruc-
ture. TheEavg andEstdv values represent the mean and standard
deviation of folding energies for random sequences with identical
nucleotide frequency. Rather than compute these values viashuff-
ling, we use the same regression SVM as used in theRNAz program
for zscore calculations, (Washietlet al., 2005b). Lenghts of both
stems and hairpin-loop regions as well as the values for the distances
ensure to classify only biologically sensible structures.GC content
often is an indicator of thermodynamical stability of the structure
for GC base pairs are connected with three hydrogen bonds instead
of two in the AT base pairs.

Box C/D snoRNAs The complete region from the start of C box to
the end of D box must remain unpaired. This long loop is enclosed
by a short stem of usually 4-10 stacked base pairs. Dependingon the
predicted start positioniC of the C box and end positionjD of the D
box motif in the sequence, we truncate the sequence 15nt upstream
of C and downstream of D box. IfiC < 15, the sequence is not
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Fig. 3. Schematic representation of the two major snoRNA classes: box
H/ACA snoRNA (left) and box C/D snoRNA (right). The characteristic
sequence motifs, i.e., the boxesC = “AUGAUGA”, D = “CUGA”, H =
“ANANNA” (consensus sequence), andACA, as well as the secondary struc-
ture features are crucial for the function of snoRNAs (Bachellerie et al.,
2002; Lafontaine & Tollervey, 2002). See Fig. 2 for sequencelogos of the
three boxes.

truncated at the 5’ end ifjD > l − 15 the sequence is not truncated
at the 3’ end. In addition,iC andjD must be at least 3nt away from
start and end positions of the input sequence.

The remaining sequence is then folded forcing the region bet-
ween both boxes to stay unpaired. For box C/D snoRNAs we use
the following descriptors:

E Minimum free energy when foldingwithoutconstraint
Ec Minimum free energy when foldingwith constraint

Eavg Mean of the MFE
Estdv Standard deviation of the MFE

Ls Number of paired bases in terminal stem
Ll Number of unpaired bases in hairpin loop

DCD Distance from C to D box
σC Matching score of box C
σD Matching score of box D
GC GC content of the subsequence

Runtime is reduced by avoiding unnecessary examinations of
unlikely candidates, i.e., those with box matching scores below0.5,
distances between boxes that are too short or too long, and those for
which the characteristic secondary structures cannot be attained.

3 RESULTS

3.1 Test Statistics
To test each of the two models, we used cross-validation withran-
domly distributed datasets for training and testing. To this end, we
partitioned the available data for positive and negative samples into
sets of 50% training and test data, 80% train and 20% test dataand
90% train and 10% test data, respectively. The training vectors are
scaled such that the values are in a range from [-1,1] before crea-
ting the model. The SVM type of our models is C-SVC, kernel-type
is radial basis function (rbf) kernel and values for gamma and C
are 2 and 1, respectively. When applyingsnoReport to the test
sequences we obtained a sensitivity of 0.96 and specificity of 0.91
for the classification of C/D snoRNAs. For H/ACA snoRNA clas-
sification we find a sensitivity of 0.78 and a specificity of 0.89. In
both cases those values correspond to the 80% test and 20% train

H/ACA ACA25
H/ACA ACA32

C/D mgh28S-2411
H/ACA ACA1
H/ACA ACA8

C/D mgh28S-2409
H/ACA ACA18
H/ACA ACA40

Conservation

C/D and H/ACA snoRNAs, scaRNAs and microRNAs from snoRNABase and miRBase

Fig. 4. UCSC Genome Browser (http://genome.ucsc.edu/) showing
snoRNA rich region inHomo sapienschr11:93103000-93108500 (Assem-
bly March 2006). All but the H/ACA snoRNA ACA25 could be classified as
snoRNAs and correctly assigned to the specific class. There were no other
loci in this region that were (mis-)classified bysnoReport as putative
snoRNAs.

model. The accuracy values of course increase for the 90%/10%
model. Due to the small data sets, this increase is not significant,
however.

The human genome contains a region that is particularly richin
snoRNAs chromosome 11, positions 93103000 to 93108500 (hg18);
it contains 2 C/D and 6 H/ACA snoRNAs. Fig. 4 gives a short over-
view of this region. We appliedsnoReport and 2 target based
snoRNA prediction tools to this region in order to evaluate the
sensitivity.

In order to assess the false discovery rate ofsnoReport, 100
sequences are created using a genomic snoRNA rich region on
human chromosome 11 (see, Fig.4) and applying the dinucleotide
shuffling procedure included in theSQUID toolkit by Durbinet al.
(1998) to this sequence. These randomized sequences are of course
devoid of true snoRNAs.

These 100 “random sequences” were scanned withsnoReport.
Additionally, we scanned those sequences with the box H/ACA
snoRNA detectorsnoGPS (Schattneret al., 2004) and box C/D
snoRNA dectectorsnoScan (Lowe & Eddy, 1999) to compare true
and false prediction rates. Both programs require target information
(which is either included in the program packages for human and
yeast or can be downloaded from the corresponding web pages).
A more extensive target set forsnoGPS was constructed here by
declaring all Us in human rRNAs and snRNAs as potential targets.
Note that this is still more restrictive than the approach taken by
snoReport.
SnoGPS found 17 H/ACA snoRNA candidates on the human

snoRNA rich region. Two overlap ACA1, three with ACA8, two
with ACA25 and one with ACA40. However, the two C/D snoRNAs
were also classified as H/ACA and there were 8 additional can-
didates predicted that could not be mapped to one of the known
snoRNAs in this region. Using the more extensive target set that
contains every possible U as a putative target site,SnoGPS found
226 H/ACA snoRNA candidates on the human genomich snoRNA
rich region including all C/D snoRNAs.SnoGPS reported 926
candidates in the 100 shuffled sequences. In summary, 9 candi-
dates predicted bySnoGPS could be assigned to known H/ACA
snoRNAs while 6 candidates were misclassified on the human
snoRNA rich region using known targets only. Using the extended
target set, the false discovery rate increases significantly to∼ 80%.
Additionally, SnoGPS reported 927 candidates on the randomized
sequences, which were also regarded as false positve predictions.
SnoScan reported 19 C/D snoRNA candidates on the human

snoRNA rich region. Three contain the complete C/D snoRNA
mgh28S2409and 2mgh28S2411while the remaining 14 candi-
dates overlap with less than a half of the length of the known gene
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with the two known C/D snoRNA candidates and, thus are sligthly
dislocated. On the 100 shuffled sequencesSnoScan predicted 257
snoRNAs.

In contrast,snoReport recovered all of the H/ACA and C/D
snoRNAs with the exception of ACA25 and did not report any addi-
tional candidates on chromosome 11 region. ACA25 was not found
bysnoReport because the H box is located in the paired region of
the 5’ stem. If this pairing is prevented, the whole stem is destroyed.
The sequence hence does not pass the structure filter. On the shuffled
sequences, we found 90 box C/D candidates and only 6 H/ACA
candidates. In these examples, the specificity ofsnoReport is an
order of magnitude better than that of bothSnoGPS andSnoScan
while the sensitivity is at least comparable.

We remark that our data contain a nice example of an experimen-
tally known orphan snoRNA that was detected bysnoReport but
was not found by the target-dependent approaches: ACA18 H/ACA
snoRNA has no known targets. It was correctly classified as H/ACA
snoRNA bysnoReport, while it was not detected bySnoGPS
even with the extended target set.

3.2 Validation on Real Data
For further validation of the prediction quality ofsnoReport we
applied our program to a set of elsewhere predicted and partially
verified snoRNA sequences in human, nematodes, drosophilids, and
the very distant Leishmania species.

Yang et al. (2006) reported 54 novel snoRNAs in the human
genome (21 C/D and 32 H/ACA box snoRNAs) using their com-
putational approachsnoSeeker which is based on probabilistic
models, pairwise whole genomic alignments of eukaryotes and regi-
ons of sequence complementary to rRNAs or snRNAs. Screening
their candidate sequences withsnoReport resulted in 11 of 21
putative C/D candidates (including 7 of the 10 candidates whose
expression was confirmed by northern blot analysis) as well as 23
of the 33 H/ACA candidates (8 of the 10 experimentally confirmed
ones).

The training sets are dominated by vertebrate sequences. Wethe-
refore applied our program to predicted and partially experimentally
confirmed snoRNAs reported in several recent publications in order
to get an impression how reliablysnoReport predicts canoni-
cal snoRNAs beyond the phylogenetic range of its training set, i.e.,
outside the vertebrates. A short summary of the results on already
reported snoRNA candidates is given in Table 2.
Applying a novel experimental protocol, Denget al. (2006) clo-
ned numerous small non-coding RNAs inCaenorhabditis elegans.
Based on their genomic environment and transcriptional characteri-
stics they found two thirds independently transcribed, among them
many intronic snoRNAs. We appliedsnoReport to their whole
set of sequences that also contains RNAse P, snRNAs, snRNA-like
and “stem-bulge RNAs” as well as 42 putative novel C/D and 47
H/ACA box snoRNAs and novel not further classified candidates.
We found 22 of the C/D snoRNAs, while 3 sequences were mis-
sclassified as C/D snoRNA. Additionally, 31 H/ACA snoRNAs
could be veryfied with our program and none of the sequences
was falsely classified as H/ACA snoRNA. All previously known
snoRNAs were found and 5 of the previously unassigned novel
sequences could be classified as C/D snoRNA, and 1 as H/ACA
snoRNA.
Zemannet al.(2006) detected 121 snoRNAs inCaenorhabditis ele-
gansby a combination of high-throughput cDNA library screening

and computational search strategies. Applied to those sequences,
snoReport recognized 33 of 77 C/D snoRNAs and 44 of 57
H/ACA snoRNAs, including all known genes.
A further analysis on nematode snoRNAs (Huanget al., 2005),
revealed 17 C/D and 16 H/ACA genes of which 8 and 11, respec-
tively, could also be classified bysnoReport.

Human
Yanget al. (2006) CD: 11/21 HACA: 23/32

confirmed CD: 7/10 HACA: 8/10
Nematodes
Denget al. (2006) CD: 16/40 HACA: 31/47
Zemannet al. (2006) CD: 33/77 HACA: 44/57
Huanget al. (2005) CD: 8/17 HACA: 10/16
Drosophilids
Accardoet al. (2004) CD confirmed: 11/27

CD not confirmed: 19/70
Leishmania
Accardoet al. (2004) CD: 7/62 HACA-like: 0/37

Table 2. Results ofsnoReport applied to reported snoRNAs in human,
nematodes, drosophilids and leishmania. We display the number of can-
didates that were positively classified bysnoReport and the number of
candidates reported in the cited references.

Accardoet al.(2004) computationally searched for C/D snoRNAs
in the Drosophila melanogastergenome. Out of 27 confirmed
sequencessnoReport correctly assigned 11 candidates and addi-
tionally classified 19 of their “not confirmed” candidates.

A very recent genome-wide analysis of snoRNAs inLeishma-
nia major (Liang et al., 2007) found 62 C/D box snoRNAs and 37
H/ACA-likesnoRNAs.SnoReport detected only 7 of the C/D but
none of the H/ACA-like candidates. A closer inspection showed that
the H/ACA-likesnoRNAs in Leishmanias are quite different from
the canonical box H/ACA snoRNAs of yeast and vertebrates. For
example, they lack a recognizable H box and they have an AGA
instead of an ACA box.

4 DISCUSSION
We have presented here a combination of secondary structurepre-
diction and SVM-classification that is capable of recognizing and
classifying both major classes of snoRNAs. In contrast to most
other tools (with the notable exception ofsnoSeeker (Yang
et al., 2006), see below) that have been constructed for this pur-
pose,snoReport does not rely on putative modification targets in
rRNAs or snRNAs. It uses individual sequences as input. Trained
almost exclusively on mammalian sequences it performs satisfac-
torily, with a sensitivity on the order of 50% and a false discovery
rate that is an order of magnitude lower than that of other approa-
ches, on nematodes and insects, and to a certain extent even on
distantly related eukaryotes such as Leishmania. Recent work by
Yanget al.(2006) as well as the further analysis of theRNAz survey
of the human genome (Washietlet al., 2005a) suggests that there is
still a larger number of orphan snoRNAs hidden in mammalian (and
probably also in other eukaryotic) genomes.

Our approach differs fromsnoSeeker in two respects. This
program uses a library of pairwise (whole genomic) alignments to
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which the input sequence is aligned. The resulting alignment is
then used to identify the boxes and a HMM is employed to assess
the structure. ThussnoSeeker is inherently limited to snoRNAs
that have homologs which can be aligned byblast/multiz.
In contrast,snoReport is completely independent of homology
information and does not depend on any furthera priori informa-
tion. SnoReport also differs fromsnoSeeker by its purpose.
While thesnoSeeker program is designed for screening whole
genomic alignments for putative snoRNA candidates and searching
for putative target sites,snoReport has been designed to either
annotate sequences that resulted from other non-coding RNApre-
diction tools or to screen complete chromosomes/genomes for novel
snoRNA candidates.

We have also produced a separate variant ofsnoReport (not
part of the current public distribution) that directly scores multi-
ple sequence alignments. We observed that in practice thereare too
many alignment errors in automatically generated genome-wide ali-
gnments that lead to mis-alignments in particular of the sequence
boxes. As a consequence, the direct evaluation of alignments does
not lead to an improved classification onreal data e.g. fromRNAz.
In contrast, we observed a substantial improvement on manually
curated alignments, in which the alignment of the boxes are repai-
red or mis-aligned sequences were removed. Thus we propose to
further explore a two-step classification procedure: In thefirst step,
usesnoReport separately on all individual sequences of an input
alignment. If sufficient evidence is accumulated for a candidate
then a high-quality alignment can be constructed (using a structure
based-alignment approach such aslocarna (Will et al., 2007) or
possibly also a specialized alignment tool that knows aboutsnoRNA
specific features). In the second step, this alignment couldthen be
re-investigated by the alignment-version ofsnoReport.

Our compuational experiments show that snoRNAs show
substantial variation between distantly related eukaryotes. The
snoReport software therefore has been designed to be easily
retrained as additional snoRNA sequences become available. In
particular, the sensitivity for non-mammalian species could be
improved by using clade specific models. While this option isbuilt
into the software already, its practical applicability is severely limi-
ted by small sets of snoRNAs that have been characterized forany
given species beyond metazoan animals and yeast.
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