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ABSTRACT

Summary: Unlike tRNAs and microRNAs, both classes of snoRNAs,
which direct two distinct types of chemical modifications of uracil
residues, have proved to be surprisingly difficult to find in genomic
sequences. Most computational approaches so far have explicitly
used the fact that snoRNAs predominantly target ribosomal RNAs
and spliceosomal RNAs. The target is specified by a short stretch of
sequence complementarity between the snoRNA and its target. This
sequence complementarity to known targets crucially contributes to
sensitivity and specificity of snoRNA gene finding algorithms.

The discovery of “orphan” snoRNAs, which either have no known tar-
get, or which target ordinary protein-coding mRNAs, however, begs
the question whether this class of “housekeeping” non-coding RNAs
is much more wide-spread and might have a diverse set of regulatory
functions. In order to approach this question, we present here a com-
bination of RNA secondary structure prediction and machine learning
that is designed to recognize the two major classes of snoRNAs, box
C/D and box H/ACA snoRNAs, among ncRNA candidate sequences.
The snoReport approach deliberately avoids any usage of target
information. We find that the combination of the conserved sequence
boxes and secondary structure constraints as a pre-filter with SVM
classifiers based on a small set of structural descriptors are sufficient
for a reliable identification of SnoRNAs.

Tests of snoReport on data from several recent experimental sur-
veys show that the approach is feasible; the application to a data-
set from a large-scale comparative genomics survey for ncRNAs
suggests that there are likely hundreds of previously undescribed
“orphan” snoRNAs still hidden in the human genome.

Availability: The snoReport software is implemented in ANSI C.
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1 INTRODUCTION

High through-put studies employing fundamentally differexpe-
rimental approaches have demonstrated that a substaatiabh of
the transcriptional output of eukaryotic cells does notecfut pro-
teins (Carnincet al,, 2005; Chengt al, 2005; Bertonet al., 2004).
These studies not only generated a plethora of data on paadigr-
stood novel genes but also led to a rapid increase in the nuafibe
documented members of well-established structured RNAli&sn
Tools of comparative genomics, in particuRNAz (Washietlet al,,
2005b) ancevof ol d (Pedersert al., 2006), furthermore demon-
strated that RNA secondary structure is under stabilizeigcsion
at thousands of loci in the genomes of higher eukaryotesgAi-si
ficant fraction of these loci are most likely independent-coding
RNAs (Washietkt al,, 2005a; Pederseat al, 2006), albeit the over-
whelming majority of these computational predictions sp tfas
remained without functional annotation.

Non-protein-coding RNAs (ncRNAs) form a very heterogergou
group of transcripts with diverse evolutionary origins dngtories.
Indeed, several classes of enigmatic small ncRNAs have thsen
covered during the last year: piwi-related piRNAs (letal.,, 2006;
Aravin et al, 2006), 21U-RNAs (Rubyet al, 2006), and three
classes of small ncRNAs associated with promoters and newohi
protein-coding genes (Kapraneval, 2007). The classification and
annotation of both experimentally discovered and comjartally
predicted RNAs thus have become an important topic in coaput
tional biology, reviewed e.g. by The Athanasius F. Bompfiierer
RNA Consortium:et al. (2007).

Increased interest in NcRNAs in general has also motivated a
series of experimental studies in diverse organisms aiimgcre-
asing the set of documented members of the two best-unddrsto
RNA classes: microRNAs and snoRNAs. Most of the recent éxper
mental approaches in this direction were assisted by lupimtics
employed to predict candidates for experimental verificatiSo
far, however, of all classes of small RNAs, only tRNAs can be
detected reliabaly solely based on the genomic sequende awit
sensitivity and specificity that allows nearly perfect geeewide
annotation without the need for comparative genomics aghres
(usingt RNAScan- SE (Lowe & Eddy, 1997)). A large array of
different approaches, reviewed e.g. in Yoon & De MicheliG@p
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has recently been developed to detect microRNAs. The agntin
increase in the number of human microRNAs from one releagesof

nm RBase (Griffiths-Jones, 2004) to the next shows that none of the
existing tools can in practice find microRNA precursors veiieci-
ficity and sensitivity comparable to thatbRNAScan- SE. Despite
significant improvements in recent years, the tools foralisdng
snoRNAs (Lowe & Eddy, 1999; Schattneral., 2004; Edvardsson
et al, 2002) are even less reliable.

In fact, with the exception of a small number of evolutiohari
very well conserved RNAs — in particular rRNAs, tRNAs (Lowe
& Eddy, 1997), the U5 snRNA (Collinst al, 2004), RNAse P
and MRP (Piccinelliet al., 2005) — most ncRNAs are not only
hard to discovede novoin large genomes, but they are also sur-
prisingly hard to recognize if presented without annotatid/hile
it is often impossible to use relatively faint sequence hiogies
to find homologs of known RNAs in a complete genome, it can
be much easier teecognizethe very same sequences in the out-
put of genomic ncRNA screens, due to the enrichment of faneti
RNAs by several orders of magnitude. Moreover, we found in
previous ncRNA screens based BNAz (Washietlet al, 2005a;
Missalet al,, 2005, 2006), that a comparison wihamalignments
using structure-based methods suchi ag er nal (Nawrocki &
Eddy, 2007) identifies very feRNAz hits that are not already reco-
gnizable by means dbl ast. Thus, whilehomologsof known
sequences usually can be recognized reliably, determiciags
membershipf novel examples is a much harder problem.

In this contribution, we introduce a combination of RNA seco
dary structure prediction and machine-learning that isabbgp of
recognizing snoRNAs in single sequences. In contrast te pre
vious methods for snoRNA recognition (with the exception of
snoSeeker (Yanget al, 2006)), we deliberately do not include
information on putative target sites within ribosomal olicgnso-
mal RNAs although these additional constraints can draaiati
enhance the specificity (Lowe & Eddy, 1999; Schateteal., 2004,
2006). Notably, an increasing number of orphan snoRNAschvhi
lack antisense to rRNAs or snRNAs, has been experimentigly-i
tified from different eukaryotes, e.g. (Huttenhofer al., 2001,
2004; Huanget al., 2005). In particular, a subgroup of snoRNAs
is expressed in the mammalian brain and appears not to bk invo
ved in modification of rRNAs and snRNAs. Instead, some ofehes
snoRNAs target specific MRNAs and interfere with A-to-1 ealjt
see e.g. the work of Vitalét al. (2005) and the recent review by
Rogelj (2006).

For microRNAs, we recently presented the machine learnin
approachRNAni cr o, that has been designed specifically to anno-
tate genome-wide comparative genomics data (Hertel & &tadl
2006): Based on about a dozen variables describing featires
sequence variation and consensus structure in a multipleesee
alignment, a support vector machine (SVM) is trained tamtigtish
between microRNA precursors and other types of hairpieikkuc-
tures. The observation that box H/ACA snoRNAs acted as deicoy
early versions oRNANi cr o’'s SVM model suggested to use a simi-
lar approach, albeit with adapted sets of descriptors foR&A
recognition and a specific pre-filter based on predicted sty
structures. Since the two sub-classes of snoRNAs, box C{D an
box H/ACA sequences are mutually unrelated in terms of sezpie
and structure, Fig. 3noRepor t employs distinct models derived
from a similar collection of descriptors for them.

CD pos. samples 135
CD neg. samples 1770
HACA pos. samples 81
HACA neg. samples 89

Table 1. Training and test data. Positive examples correspond tkriben
box C/D and box H/ACA snoRNAs froranoRNABas e that pass the initial
test for the presence of the sequence motifs and structeaalires. The
negative set consists of selected Rfam families that aresmaRNAS (e.g.
snRNAs, RNase P, 5S rRNAs, tRNAs), as well as miRNAs takem fraR-
Base that pass the initial motif and structure filter. Sonie &10RNAs also
show sequence motifs similar to H box and H/ACA also may shdana
scoring C and/or D box, due to the fact that the box motifs an&vis
and the matching algorithm also finds similar boxes - naguvaith a lower
score. These sequences are included as negative examgiles bBACA
snoRNAs, andiice versa

2 MATERIALS AND METHODS
2.1 Data Sources

Since snoReport in essence implements a machine learning
method, positive and negative training sets play an esdenatie
for the performance of our approach. As is often the casedimbi
formatic applications, the available positive datasetsratatively
small. We use here the collection of tsteoRNABase (Lestrade
& Weber, 2006), while other non-coding RNAs from tiRé am
(Griffiths-Joneset al,, 2005) andri RBase (Griffiths-Jones, 2004)
and a set of random sequences serve as negative examplggr€lu
of sequences with substantial sequence homology are deggtm
usingbl ast cl ust (Altschul et al, 1990) with anF-value thres-
hold of 10~2. From each cluster, only a single representative is
retained. In this way we avoid correlations between test teaiel
ning sets in validation experiments. The total numbers aflable
independent test and training sequences are summarized.ii.T
Position specific weight matrices (PWMs) are used to repre-
sent the characteristic sequence motifs. These are eedr&cm
snoRNABase (Lestrade & Weber, 2006) using the web-version of
nmene (Bailey & Elkan, 1994), see Fig. 1 for the resulting motifs.
We applysnoReport to sets of predicted and partially experimen-
tally verified C/D and H/ACA snoRNAs from the studies of (Lowe
& Eddy, 1999; Schattnest al, 2004; Huanget al., 2005; Zemann
et al, 2006; Yanget al, 2006) to assess the performance of our
approach.

ASASEA AUGAUGA CUGA

(b) Box C

g

(a) BoxH (c) Box D

Fig. 1. Frequency plots of characteristic sequence motifs. Box AGA
contrast is an exact sequence pattern. See supplemengliahé&r cor-
responding position specific weight matrices.

2.2 Software Components

RNA structure prediction is performed using the curreneask
1.6 of the Vi enna RNA Package (Hofacker et al, 1994,
Hofacker, 2003). PWMs are matched to the genomic sequeimtg us
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Fig. 2. Definition of snoRNA boundaries with respect to the boxesitban
the input sequence. The specified regions dfg;, d}is € [3,15|nt and
Dcp € [3,200]nt for C/D box snoRNA, andi2 ; as well asDgaca €
[40, 120]nt andd?_ = 0 for box H/ACA snoRNAs.

pwrat ch, areimplementation (Mosiet al., 2006) of the algorithm
described in Kelet al. (2003). We usd i bsvm 2.83 (Chang &
Lin, 2001) to implement the support vector machine. The oy
snoReport is written in ANSI C and links these components.

2.3 ThesnoReport Workflow

The two major classes of snoRNAs, the C/D box and the H/ACA
can clearly be distinguished by characteristi

box snoRNAs,
sequence motifs and structural features. A third class oRBIAs,

the so-calledscaRNAS, often shows features of the two other clas-

ses combined within a single molecule. Our goal here is athal

is able to distinguish snoRNAs from the rest of the modern ARN

world”, and that in particular reliably recognize membefrthe two

major snoRNA classes. Both C/D box and H/ACA box snoRNAs are Lus

distinguished by their characteristic secondary strestunaturally,
hence, we start with structure prediction.
In the prototypical structure of both classes, the charitie

sequence boxes are located in unpaired regions. Sincectaedi

structures that are computed from a single sequence ag¥ tatte-

liable, see e.g. Hofackeat al. (2002), we first map the conserved
sequence boxes to the input sequence. Pairs of boxes C amdHD, o
and ACA boxes, respectively, that are located within a maxim

distance of 200 or 120nt, respectively, from each otheresewr

order to keep memory requirements low, only positive resaie
immediately written to an output file (there is also an optioprint
all results). A candidate is classified as positive, i.e.patative
snoRNA candidate, if the SVM classification returns a cfassi
tion psym > 0.5. Candidates wittpsvym > 0.9 are regarded as
high-scoring candidates.

The snoReport package additionally includeser | script
which summarizes the output by extracting the best hit @hase
the resulting probability) from a group of predictions aedapping
locations of the input string.

Box H/ACA snoRNAsBox ACA is located immediatelwfter the
last paired base of the second stem loop. Using the fact ttht b
boxes must be unpaired as a constraint, the secondarywstaft
the sequence (truncated after ACA) is computed. The irstiaic-
ture test is passed if it forms a single stem-loop structeteveen
the H and the ACA boyand if there is a stem-loop structure pre-
ceding box H. Now the sequence is truncated again at the 5’ end
before the first base pair of this first stem-loop. As a crdsck,
the constrained structure is recomputed and the first stem-is
adjusted if necessary. Based on this predicted structudettz®
truncated sequence, the following attributes are extdafcieSVM
classification:

E Minimum free energy when foldingithout constraint
E. Minimum free energy when foldingiith constraint
Eavg Mean of the MFE
Egtqv Standard deviation of the MFE
Lss Number of paired bases in 5’ stem
Lss Number of paired bases in 3’ stem
L;5 Number of unpaired bases in 5" hairpin loop
Number of unpaired bases in 3’ hairpin loop
Drors Distance from H box td** unpaired base of** interior
loop of 5’ stem
D 2r3 Distance from ACA box td ** unpaired base df** interior
loop of 3’ stem

Dgaca Distance from H to ACA box

GC GC content of the subsequence
omn pwrat ch score of the H box

To provide bothE and E. helps to get an idea how much “effort”
is necessary to force the sequence into the requestedusumt

seeds for a snoRNA candidate. Since the length of the sequengs i sequence likes to fold into another more or less statles-

influences the outcome of structure predictions, we eséinttad
boundaries of the snoRNA as indicated in Fig.2.
Constrained secondary structures (Hofackéral, 1994) are

ture. TheEq.4 and Eq.q4, Values represent the mean and standard
deviation of folding energies for random sequences witimtidel
nucleotide frequency. Rather than compute these valueshwiti-

then computed for all pairs of C and D, and H and ACA boxes,”ng, we use the same regression SVM as used ifRM& program

respectively, that are within a maximal distance of 200 a@ni

for zscore calculations, (Washiedt al, 2005b). Lenghts of both

(indicated bydcp anddmaca, resp., in Fig. 2). In the case of  giems and hairpin-loop regions as well as the values forigtartbes
box C/D snoRNAs, the entire region between boxes C and D mUs{nsyyre to classify only biologically sensible structu®€: content
be unpaired, for H/ACA only the boxes themselves are préeent fien s an indicator of thermodynamical stability of theusture

from base pairing. The constraint folding algorithm as iempén- ¢, GC base pairs are connected with three hydrogen bontisihs
tedin theVi enna RNA Package is used for secondary structure ¢ o in the AT base pairs.

computation.

If, using the constraints described above, the sequends iialo
a prototypical snoRNA structure, the feature vector is cotegp
from this sequence/structure pair and passed to the comdsyy
SVM. Both folding constraint and feature vector are of ceutife-

rent for box C/D and H/ACA snoRNAs. With an additional option
the user can also scan the reversed complement of the sequienc

Box C/D snoRNAs The complete region from the start of C box to
the end of D box must remain unpaired. This long loop is emtlos
by a short stem of usually 4-10 stacked base pairs. Dependitize
predicted start positioir- of the C box and end positigib of the D
box moatif in the sequence, we truncate the sequence 15neapst
of C and downstream of D box. i~ < 15, the sequence is not
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H/ACA snoRNA
C/D snoRNA
oc oD
5 3 L.

Fig. 3. Schematic representation of the two major snoRNA classes: b
H/ACA snoRNA (left) and box C/D snoRNA (right). The charatséc
sequence motifs, i.e., the box€& = “AUGAUGA", D = “CUGA", H
“ANANNA" (consensus sequence), aA@A, as well as the secondary struc-
ture features are crucial for the function of snoRNAs (Bdlehie et al,
2002; Lafontaine & Tollervey, 2002). See Fig. 2 for sequelag®s of the
three boxes.

truncated at the 5’ end jfp > | — 15 the sequence is not truncated
at the 3’ end. In addition,c andjp must be at least 3nt away from
start and end positions of the input sequence.

The remaining sequence is then folded forcing the region bet

ween both boxes to stay unpaired. For box C/D snoRNAs we us
the following descriptors:

E

Ec
Eavg
Estdv
Ls

L
Dcp
ocC
gD

GC

Minimum free energy when foldingyithout constraint
Minimum free energy when foldingiith constraint
Mean of the MFE

Standard deviation of the MFE

Number of paired bases in terminal stem

Number of unpaired bases in hairpin loop
Distance from C to D box

Matching score of box C

Matching score of box D

GC content of the subsequence

ACA0|

conservation BI 111 |1l W m um
Fig. 4. UCSC Genome Browser (http://genome.ucsc.edu/) showing
snoRNA rich region irHomo sapienshr11:93103000-93108500 (Assem-
bly March 2006). All but the H/ACA snoRNA ACA25 could be clifgsd as
snoRNAs and correctly assigned to the specific class. There mo other
loci in this region that were (mis-)classified IsynoReport as putative

SNORNAs.

model. The accuracy values of course increase for the 9%%/10
model. Due to the small data sets, this increase is not signifi
however.

The human genome contains a region that is particularlyirich
snoRNAs chromosome 11, positions 93103000 to 9310850@fhg1l
it contains 2 C/D and 6 H/ACA snoRNAs. Fig. 4 gives a short ever
view of this region. We appliednoReport and 2 target based
snoRNA prediction tools to this region in order to evaludte t
sensitivity.

In order to assess the false discovery ratswdReport, 100
sequences are created using a genomic snoRNA rich region on
human chromosome 11 (see, Fig.4) and applying the dinudéeot
ghuffling procedure included in tH&QUI D toolkit by Durbinet al.
(1998) to this sequence. These randomized sequences ararséc
devoid of true snoRNAs.

These 100 “random sequences” were scannedsvitiRepor t .
Additionally, we scanned those sequences with the box H/ACA
snoRNA detectosnoGPS (Schattneret al,, 2004) and box C/D
snoRNA dectectasnoScan (Lowe & Eddy, 1999) to compare true
and false prediction rates. Both programs require tardetrimation
(which is either included in the program packages for humah a
yeast or can be downloaded from the corresponding web pages)
A more extensive target set fenoGPS was constructed here by
declaring all Us in human rRNAs and snRNAs as potential targe
Note that this is still more restrictive than the approadketaby

Runtime is reduced by avoiding unnecessary examinations afnoReport .

unlikely candidates, i.e., those with box matching scordew0.5,
distances between boxes that are too short or too long, asd fbr
which the characteristic secondary structures cannottamad!.

3 RESULTS
3.1 Test Statistics

To test each of the two models, we used cross-validation naith
domly distributed datasets for training and testing. Te #mnd, we
partitioned the available data for positive and negativeyges into
sets of 50% training and test data, 80% train and 20% testatata
90% train and 10% test data, respectively. The trainingorecire
scaled such that the values are in a range from [-1,1] befa® c
ting the model. The SVM type of our models is C-SVC, kernglety
is radial basis function (rbf) kernel and values for gamme @n
are 2 and 1, respectively. When applyisgoRepor t to the test
sequences we obtained a sensitivity of 0.96 and specifi€ityad
for the classification of C/D snoRNAs. For H/ACA snoRNA clas-
sification we find a sensitivity of 0.78 and a specificity of@.&n

SnoGPS found 17 H/ACA snoRNA candidates on the human
snoRNA rich region. Two overlap ACAL, three with ACA8, two
with ACA25 and one with ACA40. However, the two C/D snoRNAs
were also classified as H/ACA and there were 8 additional can-
didates predicted that could not be mapped to one of the known
snoRNAs in this region. Using the more extensive target Isat t
contains every possible U as a putative target StegGPS found
226 H/ACA snoRNA candidates on the human genomich snoRNA
rich region including all C/D snoRNAsSnoGPS reported 926
candidates in the 100 shuffled sequences. In summary, 9-candi
dates predicted b$noGPS could be assigned to known H/ACA
snoRNAs while 6 candidates were misclassified on the human
snoRNA rich region using known targets only. Using the edézh
target set, the false discovery rate increases significemtt 80%.
Additionally, SnoGPS reported 927 candidates on the randomized
sequences, which were also regarded as false positve fiwedic

SnoScan reported 19 C/D snoRNA candidates on the human
snoRNA rich region. Three contain the complete C/D snoRNA
mgh2852409nd 2 mgh2852411while the remaining 14 candi-

both cases those values correspond to the 80% test and 2% tradates overlap with less than a half of the length of the knoemeg
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with the two known C/D snoRNA candidates and, thus are sligth
dislocated. On the 100 shuffled sequenSeeScan predicted 257
SNORNAs.

In contrast,snoReport recovered all of the H/ACA and C/D
snoRNAs with the exception of ACA25 and did not report anyiadd
tional candidates on chromosome 11 region. ACA25 was natdou
by snoReport because the H box is located in the paired region of
the 5’ stem. If this pairing is prevented, the whole stem itidsed.
The sequence hence does not pass the structure filter. Omufled

sequences, we found 90 box C/D candidates and only 6 H/ACA

candidates. In these examples, the specificityrddRepor t is an
order of magnitude better than that of b&hoGPS andSnoScan
while the sensitivity is at least comparable.

We remark that our data contain a nice example of an experimen

tally known orphan snoRNA that was detectedsmoReport but
was not found by the target-dependent approaches: ACALERB/A
snoRNA has no known targets. It was correctly classified 284/
snoRNA bysnoRepor t, while it was not detected b$noGPS
even with the extended target set.

3.2 Validation on Real Data

For further validation of the prediction quality shoReport we
applied our program to a set of elsewhere predicted andafisrti
verified snoRNA sequences in human, nematodes, drosagtalidi
the very distant Leishmania species.

Yang et al. (2006) reported 54 novel snoRNAs in the human
genome (21 C/D and 32 H/ACA box snoRNASs) using their com-
putational approacknoSeeker which is based on probabilistic
models, pairwise whole genomic alignments of eukaryotesegi-
ons of sequence complementary to rRNAs or snRNAs. Screenin
their candidate sequences wimoReport resulted in 11 of 21
putative C/D candidates (including 7 of the 10 candidatessgh
expression was confirmed by northern blot analysis) as veeli3a
of the 33 H/ACA candidates (8 of the 10 experimentally conéidm
ones).

The training sets are dominated by vertebrate sequencetheAle
refore applied our program to predicted and partially expentally
confirmed snoRNAs reported in several recent publicatinresder
to get an impression how reliablynoReport predicts canoni-
cal snoRNAs beyond the phylogenetic range of its trainingise,
outside the vertebrates. A short summary of the results ready
reported snoRNA candidates is given in Table 2.

Applying a novel experimental protocol, Derag al. (2006) clo-
ned numerous small non-coding RNAs@aenorhabditis elegans
Based on their genomic environment and transcriptionalacteri-
stics they found two thirds independently transcribed, @gnivem
many intronic snoRNAs. We applieshoRepor t to their whole
set of sequences that also contains RNAse P, sSnRNAs, sniREA-|
and “stem-bulge RNAs” as well as 42 putative novel C/D and 47
H/ACA box snoRNAs and novel not further classified candidate

and computational search strategies. Applied to thoseesegs,
snoReport recognized 33 of 77 C/D snoRNAs and 44 of 57
H/ACA snoRNAs, including all known genes.

A further analysis on nematode snoRNAs (Huaetgal., 2005),
revealed 17 C/D and 16 H/ACA genes of which 8 and 11, respec-
tively, could also be classified lgnoReport .

Human

Yanget al. (2006) CD: 11/21 HACA: 23/32
confirmed CD: 7/10 HACA: 8/10

Nematodes

Denget al. (2006) CD: 16/40 HACA: 31/47

Zemanret al. (2006) CD: 33/77 HACA: 44/57

Huanget al. (2005) CD: 8/17 HACA: 10/16

Drosophilids
Accardoet al.(2004) CD confirmed: 11/27

CD not confirmed: 19/70

Leishmania

Accardoet al. (2004) CD: 7/62 HACA-like: 0/37

Table 2. Results ofsnoReport applied to reported snoRNAs in human,
nematodes, drosophilids and leishmania. We display thebeurof can-
didates that were positively classified byjoReport and the number of
candidates reported in the cited references.

Accardoet al.(2004) computationally searched for C/D snoRNAs
in the Drosophila melanogastegenome. Out of 27 confirmed
gequencesnoRepor t correctly assigned 11 candidates and addi-
ionally classified 19 of their “not confirmed” candidates.

A very recent genome-wide analysis of snoRNAsLgishma-
nia major (Liang et al,, 2007) found 62 C/D box snoRNAs and 37
H/ACA-likesnoRNAs.SnoRepor t detected only 7 of the C/D but
none of the H/ACA-like candidates. A closer inspection sadithat
the H/ACA-like snoRNAs in Leishmanias are quite different from
the canonical box H/ACA snoRNAs of yeast and vertebrates. Fo

example, they lack a recognizable H box and they have @i A
instead of an £A box.

4 DISCUSSION

We have presented here a combination of secondary strymterre
diction and SVM-classification that is capable of recogrmgzand
classifying both major classes of snoRNAs. In contrast testmo
other tools (with the notable exception shoSeeker (Yang

et al, 2006), see below) that have been constructed for this pur-
posesnoReport does not rely on putative modification targets in
rRNAs or snRNAs. It uses individual sequences as input.néai
almost exclusively on mammalian sequences it performsfaati
torily, with a sensitivity on the order of 50% and a false digery

We found 22 of the C/D snoRNAs, while 3 sequences were mistate that is an order of magnitude lower than that of other@mp

sclassified as C/D snoRNA. Additionally, 31 H/ACA snoRNAs

ches, on nematodes and insects, and to a certain extent aven o

could be veryfied with our program and none of the sequenceslistantly related eukaryotes such as Leishmania. Recerk ko

was falsely classified as H/ACA snoRNA. All previously known
snoRNAs were found and 5 of the previously unassigned nove

Yanget al.(2006) as well as the further analysis of €Az survey
bf the human genome (Washietial,, 2005a) suggests that there is

sequences could be classified as C/D snoRNA, and 1 as H/ACAtill a larger number of orphan snoRNAs hidden in mammaland (

SNoRNA.
Zemanret al.(2006) detected 121 snoRNAs@aenorhabditis ele-
gansby a combination of high-throughput cDNA library screening

probably also in other eukaryotic) genomes.
Our approach differs fronsnoSeeker in two respects. This
program uses a library of pairwise (whole genomic) aligntae¢o
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which the input sequence is aligned. The resulting aligrinien

Sheridan, R., Sander, C., Zavolan, M. & Tuschl, T. (2006). A

then used to identify the boxes and a HMM is employed to assess novel class of small RNAs bind to MILI protein in mouse testes

the structure. ThusnoSeeker is inherently limited to snoRNAs
that have homologs which can be aligned lbyast /mul ti z.

In contrast,snoReport is completely independent of homology

information and does not depend on any furthegriori informa-
tion. SnoReport also differs fromsnoSeeker by its purpose.

While thesnoSeeker program is designed for screening whole

genomic alignments for putative snoRNA candidates ancchesy

Nature 442 203-207.

Bachellerie, J.-P., Cavallle, J. & Huttenhofer, A. (2D02The

expanding snoRNA worldBiochimig 84, 775-790.

Bailey, T. L. & Elkan, C. (1994). Fitting a mixture model bypec-

tation maximization to discover motifs in biopolymersPro-
ceedings of the Second International Conference on Igésiti
Systems for Molecular Biolog®28—36.

for putative target sitessnoReport has been designed to either Bertone, P., Stoc, V., Royce, T. E., Rozowsky, J. S., UrbarE.A

annotate sequences that resulted from other non-coding [RsA
diction tools or to screen complete chromosomes/genomeme|
snoRNA candidates.

We have also produced a separate variargarodReport (not
part of the current public distribution) that directly sesrmulti-
ple sequence alignments. We observed that in practice siner@o
many alignment errors in automatically generated genorde-ali-
gnments that lead to mis-alignments in particular of theusage
boxes. As a consequence, the direct evaluation of aligrsriogs
not lead to an improved classification mral data e.g. fromRNAz.

Zhu, X., Rinn, J. L., Tongprasit, W., Samanta, M., Weissman,
S., Gerstein, M. & Snyder, M. (2004). Global identificatioh o
human transcribed sequences with genome tiling ar@gience
306, 2242-2246.

Carninci, P., Kasukawa, T., Katayama, S., Gough, J., R¥thC.,

Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C.
& et al.; FANTOM Consortium; RIKEN Genome Exploration
Research Group and Genome Science Group (Genome Network
Project Core Group)2005). The transcriptional landscape of the
mammalian genomeScience309, 1559-1563.

In contrast, we observed a substantial improvement on niignua Chang, C.-C. & Lin, C.-J. (2001). LIBSVM: a library for suppo

curated alignments, in which the alignment of the boxes epair

vector machines. Software availabletdtt p: / / www. csi e.

red or mis-aligned sequences were removed. Thus we propose t ntu. edu.tw ~cjlin/libsvm

further explore a two-step classification procedure: Infitst step,

usesnoReport separately on all individual sequences of an input

alignment. If sufficient evidence is accumulated for a cdat#
then a high-quality alignment can be constructed (usinguetire
based-alignment approach such asar na (Will et al, 2007) or
possibly also a specialized alignment tool that knows abooRNA
specific features). In the second step, this alignment cihdd be
re-investigated by the alignment-versionsafoReport .

Our compuational experiments show that snoRNAs show

substantial variation between distantly related euk&sotThe

Collins,

Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubake®&el,

S., Long, J., Stern, D., Tammana, H., Helt, G., Sementchenko
V., Piccolboni, A., Bekiranov, S., Bailey, D. K., Ganesh,,M.
Ghosh, S., Bell, I., Gerhard, D. S. & Gingeras, T. R. (2005).
Transcriptional maps of 10 human chromosomes at 5-nudkoti
resolution.Science308 1149-1154.

L. J., Macke, T. J. & Penny, D. (2004). Sear-
ching for ncRNAs in eukaryotic genomes: Maximizing bio-
logical input with RNAmotif. J. Integ. Bioinf, #6, 15p.
http://journal.inbio.de/.

snoReport software therefore has been designed to be easipDeng, W., Zhu, X., Skogerbce, G., Zhao, Y., Fu, Z., Wang, Y.,

retrained as additional snoRNA sequences become available
particular, the sensitivity for non-mammalian species |dobe
improved by using clade specific models. While this optiohust
into the software already, its practical applicability éverely limi-
ted by small sets of snoRNAs that have been characterizeahfor
given species beyond metazoan animals and yeast.
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