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Abstract — Modern unsteady (multi-) eld visualizations require an e ffective reduction of the data to be displayed. From a huge
amount of information the most informative parts have to be extracted. Instead of the fuzzy application dependent notion of feature, a
new approach based on information theoretic concepts is introduced in this paper to detect important regions. This is accomplished
by extending the concept of local statistical complexity from nite state cellular automata to discretized (multi-) e Ids. Thus, informative
parts of the data can be highlighted in an application-independent, purely mathematical sense. The new measure can be applied to
unsteady multi elds on regular grids in any application dom ain. The ability to detect and visualize important parts is demonstrated
using diffusion, ow, and weather simulations.

Index Terms —Local statistical complexity, multi eld visualization, time-dependent, coherent structures, feature detection, information
theory, ow visualization.
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1 INTRODUCTION

One of the strengths of scienti ¢ visualization is the fact that it cadatasets. And secondly, from an information theoretic point of view
communicate large amounts of information. However, images can lsaulti eld analysis is required and directly realized if the system is in-
come too crowded and cluttered to see the important facts, too. Highenced by several independent variables. In either case, thét resu
lighting the most informative regions is a powerful method to reduc®f the analysis is a single time-dependent scalar eld, de ning impor-
the amount of information displayed and guide the observers attentitance in the dataset.

The crucial step is the extraction of these regions, often called fea-
tures. At present, there exists no general de nition of a feature pexce® RELATED WORK
for being a structure or region of relevance. Depending on the adost datasets obtained by measurements or numerical simulations are
plication, e.g., computational uid dynamics (CFD), electromagneticombinations of different quantities. Though many methods in the
eld simulations, weather models or simulations of biological systemseld of scienti ¢ visualization focus on the analysis of a single eld,
completely different structures are of interest. In general, featuees ghere are several approaches treating multiple elds at a time. In gen-
detected by searching regions that ful Il certain criteria, e.g., exhibéral, two different approaches can be distinguished. Either several
a certain value or pattern [29]. As these criteria have to be speci eelds are visualized in combination, or relations between the differ-
in advance, further problems arise. In the case of vortex detection, émt elds are displayed. Examples of the rst approach are mostly
example, no general de nition exists. Vortices, however, are not-of imombinations of different techniques, e.g., color coding, glyphoend
terest because they exhibit some kind of swirling structure, but as thgsrtially transparent maps as used by Bair et al. [3] or Kirby et al. [22]
have great impact on the behavior of the ow. This property is trum 2D, and modi ed volume rendering in 3D (Andreassen [1], Riley
for all features - they are of special importance to the system. Mori@0]). The analysis of correlation between different elds belongs to
over, inside these structures it is hard to predict the system's behavitbe second category and was researched amongst others by Kaliss et
Starting from this point, a feature can be characterized as a region 28] and Sauber et al. [33]. A summary of different techniquestzan
requires a lot of information about the past to predict its own dynarfeund in [40].
ics. Utilizing information theory, an objective and universal de nition Many multi eld methods suffer from cluttering if the number of
of a feature can be given. elds gets too large. An ef cient way to reduce cluttering is to con-

Shalizi et al. [36] proposed a local criterion, called local statissentrate on relevant structures or regions, so called features. High-
tical complexity, to measure complexity in cellular automata (CA)ighting important regions does not only reduce the amount of data to
Therewith features are identi ed with regions of high local statisticdte displayed signi cantly without losing important information, but
complexity. As stated in [28, 39], CA can be used to model partial di&lso focuses the observers attention. Consequently, features have to
ferential equations (PDESs), and vice versa. The combination of theseextracted rst. As there is no general feature de nition so far, there
two approaches results in a general feature extraction method apgHists no universal method to detect them. In the literature three differ-
cable to any kind of system that can be described by PDEs, whieht approaches can be distinguished: image processing (e.g. Bbling e
comprise the majority of computational science and engineering sial- [9], Heiberg et al. [17]), topological analysis (e.g. Scheuenrein
ulations. Besides being a generally applicable measure, two additioakl[34]) and physical characteristics (e.g. Garth etal. [11], Ra@f)[3
advantages lie in the nature of statistical complexity that many oth&rdetailed description for the eld of ow visualization can be found
feature detection methods do not have: Firstly, the method is based29].
time-dependent analysis, and therefore, can easily cope with unsteadfs long as structures are relatively simple, it is possible to de ne
features. But as soon as the systems become more complex, such as
anthills, human brains or chemical reactions, the de nition of what is
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using a functiorh, which de nes a local statistic. The goalisto nd a
minimal suf cient statistid25], i.e., a function with highest compres-
sion, that still allows for optimal prediction. How informative different
statistics are, can be quanti ed using information theory. ififlerma-

tion about variable in variableb is

P(a;b) P(ajb)
I[a;b] E lo =E lo

| | : L C OB IO
ta t2 t t 4 time whereP(a;b) is joint probability, P(a) is marginal probability, and

E[X] is expectation [25]. The information containedfnl  about

Fig. 1. lllustration of the past (blue) and future light-cone (red) of a sin- the future isl 1*:h | _ The minimal suf cient statistice is the

gle position (black cell). In uences propagate at speed ¢= 1, 1.e., Only  g,0tion which maps past con gurations to their equivalence classes,
immediately adjacent neighbors affect a cell. The cones are restricted . - " L 4
i.e., classes having the same conditional distribuitoh jl

to past-depth 3 and future-depth 2.

1)

C im 1t +
different approach was taken by Grassberger [12], who de reed-c el = [P IMjl =PIl @
plexity as the minimal information that would have to be stored foxg p I*je | =P I*j)l 1 1*:el =1 1*:1 , makingea

optimal predictions. Based on this idea, statistical complexity [7] Wag cient statistic. Minimality and uniqueness are proven in [36]. The
introduced identifying the complexity of a system with the amount qf jivalence classes|  are thecausal state§7, 35] of the system,

information needed to specify its causal states, i.e., its classes of idF sdicting the same possible futures with the same possibilities As
tical behavior. In order to analyse random elds, a point-by-point ve{g minimal, the causal states contain the minimal amount of informa-
sion was formulated by Shalizi [35] called local statistical complexity;, needed to predict the system's dynamics. The minimal amount of
information of a past light-cone needed to determine its causal state,
I el ;I ,andtherewith its future dynamics, is a characteristic of
3.1 Cellular Automata the system, and not of any particular model. Accordinigigal statis-

Local statistical complexity was introduced to detect coherent strécal complexityis de ned as
tures in cellular automata (CA). A CAis a discrete model of a system, Cet) el (¢t (xt) ©)
with the game of life being the best-known example. The automaton
consists of a regular uniform lattice with a discrete variable at eadifie local complexity eldC(x;t) is given by log, P(s(%t)), with
cell. The con guration of an automaton at a certain time step is corx;t) being the causal state of space-time point at poskiand time
pletely speci ed by the values of the variables at each site. FollowirigC = 0 holds ifthe eld is either random or constant, and grows as the
prede ned local rules the con guration can change at each discre®@d's dynamics become more exible and intricate. The complexity
time step. A rule de nes which value a cell will take in the next stepgld can be computed in four steps:
depending on the values of its neighborhood in the present. Typically; petermine the past and future light-cones,and|*, up to a
the neighborhood of a cell consists of the cell itself and all immedi- prede ned depth.
ately adjacent ceIIs_. An _example for a rule is: If the cell has vlalue 0 . Estimate the conditional distributiofs I* j|
and at least two of its neighbors have value 1, change the cell's valu% Cluster past liaht- ith imilar distributi fut
to 1. For each time step all values are updated simultaneously. - P Ight-cones wi > a simi fir '|s ribution over future
CA were studied since the early 1950 d d - light-cones using a xed-size--test @ = 0:05) [18].

y s and used to describe a Iargg lculates (x
variety of systems, e.g., [13, 15, 16]. These models are commonly™ CalculateC (x;t).
used to gain deeper insight into the underlying system, whereof maftynore detailed description of the algorithm can be found in [36].
exhibit characteristic formations also known as coherent structures.
Coherent structures are a result of complex patterns of interaction Ye- LOCAL STATISTICAL COMPLEXITY OF FINITE DIFFERENCE
tween simple units [4] and can be observed in CA as well. Identifying SCHEMES
such structures automatically is still a challenging task. While mogt1 Example

methods rely on previous kr]ovyledge about. the strucures .an.d Seaé%%plexity analysis using local statistical complexity can be applied
f_or regions fu_I lling certain criteria, _Iocal sta}t|st|cal complexity Idelq'to scienti ¢ simulations as nite difference schemes, a direct analogue
i es informative regions based on information theory. to CA rules, can be used to discretize PDEs. The following simple
3.2 Local Statistical Complexity example 'of an |s.otrop|c.d|ffu5|on, e.g., ion concentration in water, is

used for illustrations. Given a concentratib(ix;tg) at each position

The basic idea of local statistical complexity is to identify spatioteny > B at timety, the temporal development of this concentratfds;t)
poral structures that exhibit the same behavior in the future, and m@agpserved. The governing PDE is

sure their probability of appearance. The less likely a structure ap-
pears, the higher is its complexity. In the following, local statistical Lf (xt) = DDf (x:t) 4)
complexity as introduced by Shalizi et al. [36] is explained. m '

Let f (x;t) be a discretized time-dependent n-dimensional eld on . . ) . N T
a regular uniform lattice. In this eld interactions between differentVith @ constant diffusion coef cienD, time derivative g (x;t) and
space-time points propagate at speethus, all points possibly hav- LaplacianDf (x;t). As boundary conditions .Constan't COhcentratlons
ing in uence on a poinip = (x;t) at timet are arranged in a so called are assumedt (x;t) = f (x;to) for x2 fB. A simple nite difference
light-cone as illustrated in Fig. 1. The same holds for all points b§Eheme in the plane consists of a cartesian lattisef 0;:::; 255
ing in uenced by p. The past light-cone op comprises all points | 0:: 1255, a given concentratiorfp : L ! R, and the difference
q=(y:t) with t < t andkx yk c(t t). The de nition of the €duation
future light-cone is analogue. The con guration of the eld in the [(axet+ )=
past cone is denoted by (x;t), the one in the future cone by (x;t).
Given a certain con guratioh , different associated con guratiohs
might appear in the eld, each with a certain probability. These prob-
abilities are summarized in the conditional distributPri*jl . |
contains all the information provided by the points in the past, which 1 ) ) 1 ) . 1 ) .
is often more than needed to preditt Thus,| can be compressed 16 0o e LO* gilade L+ fftat e LY ()

3 LocAL STATISTICAL COMPLEXITY OF FINITE STATE CA

1 1 1
= Yo+ L)+ = o+ Lt)+ — + X+ 1Lt)+
16f (x1 Lxa+ 1;t) s f(xe; X2+ Lt) 16f (X1t Lxa+ Lt)

1 1 1
éf(xl 1;xp+ 0;t) + Zf(X1:X2+ 0;t) + gf(x1+ 1%+ O;t)+



which is also known as applying a binomial 3 lter to a digital time time
image in image processing [20]. In this examplés the lattice of v T
the CA, f contains the values over time and Eq. 5 gives the complete

rule. Asc= 1, the con gurations are as illustrated in Fig. 1. The

reader familiar with either nite difference schemes or image process- A

ing might imagine a larger stencil or lter far> 1. Similar schemes g

can be applied to any PDE, allowing for analysis using local statistical oo oo oo
complexity. space porS

4.2 Adaptations (a) Sample cone con guration (b) lterated light-cones

Local statistical complexity was designed to detect coherent structufdg 2 (2) lllustration of two light-cone con gurations in a 1D eld. T he

in CA. Commonly, the celis of a CA can take only a few discrete Va|’_ed boundary encloses the future cone of Ty, the blue one the past cone

ues, e.g., from thé sé0;1:2:3). Thus, identical light-cones can beof To. The elements of each cone are numbered in successive order. (b)

detelct.ed.,easil in Ste ,1'of’ th.e al or,ithm as onlv a moderate nu ustration of an iterated cone. The red cones are the spatial successors

ber of con urgtions esist If the a 9 roach’is to beyextended to timo- the blue ones. The values in the overlapping regions can be reused
g : ; Pp . . M the second cone and need not be loaded from the eld.

dependent elds on regular grids generated by numerical simulations,

this strict similarity has to be altered, as two con gurations based on
oating-point numbers hardly ever match exactly. Thus, light-coneg ands! be the con gurations of light-cone8® andC? respectively,

with values within a certain range have to be considered equal, whi&g illustrated in Fig. 2(a) for 1D. The distance betw&8randCl is
necessitates a similarity measure for light-cones. Thisgiven by thel,-norm:

A rst approach might be to simply discretize the elds. Ne——r——
method establishes strict arbitrary borders within the range of val- kc® cltk= Zks sk2 (6)
ues, creating an arti cal discrimination with no basis on the real data. i
Additionaly, only a few bits of information can be used to encode leg0 Slk is the Lo-norm for scalar values and vectors. An elliptic
oating-point number to have a realistic chance of observing identicalmilarity function to compare vectors was proposed in [38]. Unlike
cones. Thus, the discretization is very coarse, and moreover, yestrthe Lo-norm, this measure favors certain directions, which foils the
spatial and temporal correlation between the values, which is cleaifjormation theoretic approach. Moreover, the triangle inequality does
visible in the complexity eld. The same holds for clustering schemasot hold, whereby an important part of the optimization (see Sec. 5) is
employing kMeans or principle component analysis. Both methodst applicable. Thus, thie;-norm is taken as similarity measure.
(discretization and clustering) were tested, resulting in a complexity If multiple elds are used, the cones are extended to multi light-
eld that represents the discretization, and not the informative regiorsonesMC, i.e., each multi light-cone consists of a vector of light-cones

To avoid these problems a hierarchical method is used, subdividi@g one for each eld. To make the different subcones comparable, the
the set of light-cones into different similarity classes iteratively. Thelds have to be normalized in advance, i.e., each entry in the eld
optimized version of the algorithm is summarized in Algorithm 1. Theas to be divided by the norm of the largest one. The joint distance is
extraction of past and future classi cations is accomplished in two segiven by ; ;
arate steps, each using the algorithm explained below. As structurally kMc®  MClk = é_ kC? lekz - é é_ ks:} 511,' K (7)

] 1

identical cones are required, only those points are considered theat hav
light-cones completely inside the eld, i.e., the rst and last time stepg
are omitted according to the depth of the past and future Iight-cong
respectively, and in each time step a boundary region of width max
pastDepth, futureDepth - 1c)cannot be analysed. 5 EFEICIENT IMPLEMENTATION
From the points in the inner part of the eld those are chosen as regxﬁ

i

j
teps 2 to 4 of the algorithm can be applied directly, as they operate
the different classes of cones, and not on the individual values.

e naive implementation of the light-cone classi cation is only ap-
| able to elds of rather small size as demonstrated by the timings in
le 1. To handle larger time-dependent datasets in reasonable time,
everal aspects of an ef cient implementation are proposed.
Whenever a cone is added to the list of representatives, all entries
the SDV have to be checked. Therefore, the distance between each
cone in the eld and the new representative is computed. It would be
onvenient to store all cone con gurations in the eld, which is not
%ossible, since each cone consists of

resentatives, which exhibit largest differences in their con guration
Each representative stands for a similarity class, which comprises
con gurations that are more similar to the current representative th
to any other one. The resulting partitioning of the con gurations cor-
responds to a Voronoi Diagram. This partitioning is constructed iter%-
tively. The rst representative is chosen randomly from all con gur
tions in the restricted eld. Afterwards, the distances between the r:
representative and all con gurations are computed and stored.
con guration that is least similar to the rst representative is chose
as second representative. Now, the representative/light-cone distanc
have to be updated. Therefore, all con gurations that are more similar
to the second representative than to the rst are assigned a new,rsh f€ments, n being the depth of the cone, d the dimension of the lattice
distance. Thereafter, the third representative can be determined. %lgr 3), andc = 1. Using light-cones of depth 3, would already mul-
procedure is continued until a prede ned number of representatives;;, |y the memory usage by a factor of 83 in 2D, a crucial factor for
aminimal distance between representatives and remaining light-copgge gatasets with many time steps. As the con gurations cannot be
is reached. The distance between each light-cone con guration agdreq they have to be rebuilt in each iteration. Using the fact that two
the closes_t representative is stored in a seperate vector, the so c eeding cones have a large overlap, as illustrated in Fig. 2(b) for
shortest distance vector (SDV). Each entry of the vector belongs 13 e|q, a single cone can be used that is iterated through the eld.
certain position in the eld and holds the ID of the closest representqthus, most of the time only a subset of the values has to be exchanged.
tive and the associated distance. The SDV is initialized by computing atier the setup of the Cone con guration, the distance to the new
the distances between the rst representative and all other con guryresentative has to be computed, requiring 83 scalar or vector dis-
tions. In the update process entries are modi ed if the correspondifgh a5 o be computed for cone deptld 3, 2. As this has to be done

con guration is closer to the lastly added representative than to té}?r each representative and each position in each time step, the number
stored one. The classi cation IDs needed for the estimation of condjt c4|culations of cone distances gets enormous. This can be reduced

tional probabilities are s_tored in the SDV. _ _signi cantly by applying the triangle inequality.
In order to compute distances between two con gurations a distance

measure and the way multi elds are handled have to be de ned. Let kre rk k1 rck+kl rpk 9

n 1 n 1
past: & (3+2i) future: § (1+ 2i)¢ (8)
i=0 i=0



Algorithm 1 Classi cation of light-cones

All improvements explained so far do not change the results, as they

The eld to be analysed is dened on a regular grid ofare just more ef cient techniques and no heuristics. Nevertheless, fo

nbXPos nbYPos positions, and nbTimeSteps time steps.

pastDepth depth of past light-cones

futureDepth  depth of future light-cones

offset max pastDepth, futureDepth - 1¢

n (nbXPos - 2offset) (nbYPos - 2offset )
(nbTimeSteps - pastDepth - (futureDepth - 1))

r randomly chosen representative

add r to the list of representatives

fori=1...ndo
SDVJ[i] distance between r and tkth light-cone
representative] 0

end for

init the list of candidates

while stopCriterion not ful lleddo
if SDV[lastCandidate} maxExcludedDistthen
add lastCandidate to the list of representatives
update the distances of the candidates
else
update the SDV
compute a new list of candidates
end if
end while

long time series the computational effort might still be too large. To
decrease workload, the cone classi cation can be reduced to a subset
of time-steps, i.e., representatives are chosen from étretiyne-step.

If the con gurations in the eld change at moderate speed, no essential
structures are missed. The intermediate time-steps are classi ed in a
second step. Again, the triangle inequality can be used to identify the
closest representative. The shortest representative from thieysev
time-step is taken as an estimation of the shortest distance. From the
list of representatives only those are compared to the current light-
cone, that ful Il Eq. 10.

6 RESULTS AND DISCUSSION
6.1 In uence of the Parameters

The computation of the causal states depends on two parameters: the
depth of the light cones, and the number of representatives. The “Flow
around a cylinder” (Section 6.5) is used to illustrate their in uence.

Fig. 8 shows the complexity elds for different light-cone depths.
The complexity eld for the minimal con gurations with past depth 1
and future depth 2 is shown in the third image. It already captures all
relevant structures. Increasing the past depth to 2 results in smoother
structures, as the region of in uence becomes larger and single devia-
tions are evened out. The difference between the two elds is shown
inthe fthimage. Blue regions indicate a higher complexity in the im-
age with the smaller cones, red regions higher complexity in the image

update the SDV with deeper cones. The difference eld is quite homogeneous, reveal-

ing the uniform modi cation of the eld. Cones of depth 6 are used
in the second image, which appears smoother than the other two. The

The inequality compares the three distances between the followifiference eld gives the same results as in the previous case. Thus,
cone con gurations: the current light-con8,(the closest represen- the depth of the cones has no signi cant in uence on the result. The
tative (c), and the new representative,) Thus, the new repre- deeper the cones the smoother the image. To decrease computational

sentative can only be closer to the con guration than the old orf@®Sts, cones of depth 2 were chosen for all examples. _
(kI rak< Kl rek) if Eq. 10 holds. Just as the depth of light-cones, the number of representatives has

no signi cant in uence on the results. Fig. 6 shows the same dataset
kre rnk< 2kl rek (10) with different numbers of representatives used in the computation of
complexity. If too few representatives are computed the relevantstruc
To employ this property, a matrix of all inter-representative distancégres are visible but poorly developed. In the case of 8000 representa
is stored. Entry(i; j) of the matrix stores the distance between regives certain regions are overrepresented, resulting in a kind of bver
resentatives and j. Whenever a new representative is selected, dimg. Visually best results could be achieved when limiting the number
additional row and column has to be added to the matrix. Thus, bafirepresentatives to approximately 5000. Thus, the choice of the pa-
quantities of Eq. 10 are computed only onke; rpk is store in the rameters has no great in uence on the qualitative results, they mainly
matrix andkl rck in the SDV. The costly computation of the newdetermine the quality of the resulting images.
distancekl rpkis only performed if Eq. 10 holds. Thus, many com- e
parisons can be omitted at very low cost. 6.2 Isotropic Diffusion
So far, new representatives are chosen from all con gurations An isotropic diffusion, simulated using nite differences as explained
the eld, although there are many con gurations that are very similan Section 4, is a simple example of a large variety of diffusion pro-
to earlier de ned representatives. Note that distances in the SDV cegsses, i.e., equalization of differences in concentration, heat, matter
only become shorter by adding new representatives. If new represer momentum, appearing in nature. The dataset is simulated by re-
tatives were chosen only from the con gurations most dissimilar to speated ltering using a binomial lIter. In the diffusion eld, the cells
lected representatives, the costs for the update can be further deduagthe left border are set to 1, and those at the right border to 0. Upper
Accordingly, a list of potential representatives is stored. From the SDAhd lower boundaries are initialized with linearly decreasing values
then cones with the longest distances are identi ed and their con guhat range from 1 to 0. The inner part is initialized with random values
rations and minimal distances are stored in a seperatalista value between 0.0 and 1.0. The process displayed in the upper row of Fig.
speci ed by the user, e.g., if 3000 representatives are to be detectgdis de ned on a square lattice with 256 cells in each direction. 1202
lists of 600 cones were used. As an optimal choiceadpends highly steps are simulated.
on the dynamics of the eld, no optimal value can be prede ned. Ad- The lower row in Fig. 3 shows the evolution of local statistical com-
ditionally, the worst excluded distance is stored, which isrthelst plexity. For each image 5000 representatives are determined, having
longest distance in the SDV. The iteration now only operates on the |Eist and future depth 2. The rstimage (top) shows the diffusion pro-
of potential representatives. Whenever a new representative id,addess at a very early stage, where large differences in concentrations
only the minimal distances of the candidates are updated, which ege visible. Although, the image seems rather random, several dom-
duces the number of updates in a dataset with 100,000 positions frovating regions are already present as can be seen in the complexity
100,000 to 600. Afterwards, a new representative is chosen from tieé&d below. In the rst few steps the concentrations of neighboring
list. This procedure is continued until the worst distance in the canells are equalized very quickly, forming a relative homogeneous re-
didate list is shorter than the worst excluded one. As distances aion in the inner part (light blue). After 200 iterations, the boundaries
only become shorter by adding new candidates, the worst excludeal/e become the dominating part of the system, with the corners being
distance cannot become larger. For the given example of list lendgkie most informative regions. The boundary region in the complexity
600 approximately 150 representatives were added, before a new kil indicates, how far inside the system the diffusion process has ap-
had to be computed. proached. A gap in the boundary region can be observed at the center
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of the upper and lower boundary region. In these parts, the constaj
gradient on the boundary already has the average value of 0.5a6eve;
dominant regions can be distinguished in the inner part, being releval
up to the nal step. The two images of time step 1200 illustrate ver
well, that not only the propagating front of diffusion is important, but f
the whole strip starting from the boundary.
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6.3 Local Statistical Complexity of CFD Datasets

6.1

°

The diffusion example perfectly matches the requirements of th
method, but is rather trivial from an application point of view. When | , 4 i ;

analysing simulations from the eld of uid dynamics, local statistical — - e o0
complexity has to be applied carefully. Fig. 3. An isotropic diffusion with xed concentrations at t he boundaries,
Many computational uid dynamic (CFD) datasets are solutions tinducing a gradient from the left to the right handside. The upper row
the Navier-Stokes Equations for incompressible ow: shows the concentrations at time step 2, 200, 500, and 1200. Regions
of high importance for the system's dynamics, extracted using local sta-

T N - 1 tistical complexity, are displayed in the lower row.
—d+(d N)g+ Np = R—Du+g (12)
m Ra = 0 € (12) and LU-decomposition of the coef cient matrix. The deferred correc

tions method is designed to reduce the bandwidth of the coef cient

matrix. It converges rapidly using about ten to twenty steps.

The ow domainis the meridionalplar@ = f(r;2:0 r R0
Lgwith R= 5D, L = 8D andD denoting the nozzle diameter at the

entrance boundary. The ow domain is mapped onto the unit rectangle

wheret is the velocity, p is the pressurg,are body forces, anRe
is the Reynolds number [14]. In incompressible ow, density is as;
sumed to be constant(x;t) = ry = const When simulating a uid

pressure is adapted all over the eld, whereby pressure is no Iongetre st. The present simulation uses: 91 andn, = 175 grid points in

Ir?cal quantity, gnd:; ¥ fhorl the llcijght-codnes. Thus, the (I"Io'n?s would.ial and axial directions. The boundary conditions are of Dirichlet
gve to c?lmprlse the whole e Irl] order tol ce;}pturel all mbormatlcl)_lré/pe at the entrance section and the outer boundary and at the exit con-
affecting the current position. Analyzing only the velocity by meange (e conditions are imposed for the azimuthal vorticity. The initial

of local statistical complexity, neglects important information, as Vegngitions are stagnant ow and the entrance conditions are smoothly

locity and pressure are coupled variables. Hence, an exact solutiorpglﬂlped up to their asymptotic values within four time units
incompressible ow systems is not possible using the current metho ‘The simulation results fdRe= 103, S= 1:1 (within the rangé of the
In Sec. 6.5 the complexity elds of velocity, pressure, and of velocity, § .

and pressure are analysed. While the investigation of the individ%ﬁ)enments [6], [27]) used for the complexity analysis are ten time

L : . ps after the formation of the recirculation bubble (which forms at
elds is incomplete, the analysis of both elds gives very good apy— 6:02) at timeg = 33:63092 tot = 33:70560. The ow is unsteady
?Or%'rrgsa;frnes (,)Afntha?t;?g;vti/r: ;gs%:z;isig\;gnu\év:?hsén\]g:tii(i)g/e\slvﬁich \%Id does not approach a steady asymptotic state as the velocity and
not in uenced by the pressure. Examples of both approaches will Q rticity. elds show (Fig. 4(top)). Fig. 4(top/left) shows a LIC of the
shown in the following two sections in context.

It should be noted that this restriction holds only for incompressib
ow simulations. Finite difference simulations of compressible ow

t perfectly the requirements of local statistical complexity analysis.

glocity eld, featuring several vortices. When overlayed with a trans-
arent map, hiding regions of very low velocity, a better impression of
e ow is provided, as many vortices are detected in regions close to
noise. Local statistical complexity is computed for velocity and vortic-
ity separately (Fig. 4(bottom/ middle and right)), and for both elds at
a time (Fig. 4(bottom/left)). The main structures that have developed
up to the instant of the analysis are a conical shear region, outlined
The development of a recirculation zone in a swirling ow is investiin blue in Fig. 4(top/left), and several ringlike vortex structures, one
gated by numerical simulation. This type of ow is relevant to severdieing marked with red points in Fig. 4(top/left). Both features are
applications where residence time is important to enable mixing adédtected by local statistical complexity. Only minor differences ex-
chemical reactions. ist between the analysis of velocity, vorticity, and the combination of
The unsteady ow in a swirling jet is simulated with an accurat®oth elds. This might be due to the fact, that the system's dynamics
nite-difference method. The Navier-Stokes equations for an incongre quite complex. Thus, it is easier to distinguish between regions,
pressible, Newtonian uid are set up in cylindrical coordinates assurwhere it is dif cult to predict the system's future dynamics, and those
ing axi-symmetry in terms of streamfunction and azimuthal vorticityvhere it is easy. As this differentiation is quite clear, it is present in
All equations are dimensionless containing the Reynolds number Beth elds. Unlike vorticity, local statistical complexity marks both

6.4 Swirling Flow

and the swirl numbeB as de ned by Billant et al. [6] features as equally complex. Both, the conical shear region, as well as
the vortex structure are assigned highest complexity, while the vortices
*70)D v, (R=2: exhibit only small vorticity, compared to the shear ow.
Z\MY

6.5 Flow Around a Cylinder

wherezy = 0:4D, D = 2Ris the nozzle diameter andthe kinematic The ow around a cylinder is a widely researched and well understood
viscosity, as dimensionless parameters. problem in uid mechanics. Over a certain range of Reynolds num-

The PDEs are discretized with fourth order central difference opeligers, the ow becomes asymmetric and unsteady, forming the well
tors for the non-convective terms and with a fth order, upwind-biasekhown von Karman vortex street [14]. The ow is simulated using
operator [26] for the convective terms. The time integrator is an eklaSt2D, the solver explained in [14], and available online at [10]. The
plicit s-stage, state space Runge-Kutta method ([8], [21]), the preseoh guration le for a ow around a cylinder provided with the im-
method is fourth order accurate wils 5. The time step is controlled plementation is used for the simulation, ensuring correct settings. The
by the minimum of two criteria: The limit set by linearized stabilitygrid consists of 660120 positions. 4500 time steps are simulated,
analysis and the limit set by the error norms of an embedded third oanging from timeg = 0:0 tot = 44:53. The simulation output con-
der Runge-Kutta scheme [8]. The Helmholtz PDE for streamfunctiaists of three elds: velocity, pressure, and vorticity, which are visual-
Y (r;zt) is solved with an iterative method using deferred correctionized for time step 3402 in Fig. 7.
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Fig. 4. (top) lllustrations of the swirling ow: (left) (left)LIC of the velocity of the swirling ow. The conical sh ear region is outlined in blue. Several
ringlike vortex structures can be observed, one being marked by red points. (right) The LIC is overlayed by a transparent mask, hiding regions of
small velocity. Thus, the structure of the ow is clari ed. (middle) Norm of the velocity. (right) Vorticity.

(bottom) Local statistical complexity elds of the swirling ow from left to right: velocity and vorticity, velocity, vorticity.

The corresponding local statistical complexity elds are displayethe coupled atmosphere-ocean-model ECHAM / MPI-OM [31]. With
in Fig. 9. As stated earlier, the presented method cannot be diredlyime resolution of 6 hours the data includes the daily cycle. The
applied to the pressure. Fig. 9(top) shows the complexity of the prespatial resolution is approximately 200 km.
sure, using light-cones with= 1. Itis clearly visible, that the analysis  Fig. 7(top) shows the wind and the evaporation of timestep 247.
lacks information, as the structures are no longer continuous and fé&e combination of both elds shows that a visual analysis is rather
ture holes. The complexity eld of the velocity (Fig. 9(second)), highdif cult as the system is quite complex and no simple structures attract
lights the important structures in the ow. Most dominant is the reattention. When analyzing these two elds with local statistical com-
gion, where the ow hits the object, stretching to the seperation struplexity several dominant regions appear (Fig. 7(bottom)). Timings are
tures behind the cylinder. The region where vortices originate is algiven in Table 1. A region well known for its high spatio-temporal
marked in dark blue, as well as the current positions of vorticies in thariability is the north atlantic area. Storm systems often develop in
vortex street. A ribbon shaped like a sinus runs through the whole veine western part of the atlantic, and many of them move across the
tex street, linking the periodically created vortices. The complex reeorth atlantic towards europe. Storm activity is highly correlated with
gions at the top and bottom mark regions of shear ow, induced by tlvndspeed and other meteorological parameters like vorticity, precipi-
boundaries. In general, the complexity eld of the vorticity exhibit¢ation and evaporation. Due to the chaotic behavior of the weather and
the same structures. Nevertheless, in both images the structuresctineate system, the deterministic forecast of storm tracks for a couple
not fully developed, as information is missing. Fig. 9(bottom) showsf days is still a scienti ¢ challenge. Our method highlights especially
the complexity of all three elds. As more information is included inthose features of the weather system which occur irregularly and hence
this analysis, the relevant regions get more dominant and smoothemre dif cult to forecast.

The fth image in Fig. 7 shows thé,- eld of the current time step. The video shows the temporal development of wind and evapora-
The , criterion is a standard technique to visualize vortices [32]. Aon. The diurnal cycle of evaporation is clearly visible. In a long-term
vortex is de ned as the region whefe < 0. Thus, the blue regions in analysis using local statistical complexity this regularity should be de-
Fig. 7 (bottom) are of relevance, featuring the position of the vorticégcted and classi ed as little complex. As can be seen in the complex-
in the von Karman vortex street, the regions of separation at both sidéy video of the weather, the current method is not capable of ltering
of the cylinder, and the shear ow at the boundary. The positions of tlibese events, as there are too large uctuations in the daily curves. The
vortices match perfectly the regions of highest complexity in the sinaetection of regular events will be part of future work.
shaped ribbon. The major advantage$ pfnd vorticity plots are its
short computation times (only a few seconds). As long as the ow’§ CONCLUSION AND FUTURE WORK
dynamic is rather simple, these methods are more advantageous. [fhthis paper, local statistical complexity is introduced, as a method
well known and simple examples were chosen to prove the correctnassetect important regions in systems that can be described by PDEs.
of local statistical complexity. To tap its full potential, more compliFour examples are used to illustrate the new technique, which detects
cated ows are needed that are often simulated on unstructured gré@tacial structures in the system automatically. Unlike most feature de-
that cannot be analysed so far. An advantage of complexity analysstion methods, local statistical complexity does not rely on speci -
is the fact that it shows smoother structures, providing a good contesations given by the users, but estimates complexity from the system's
The interaction of the ow behind the cylinder is more clearly repredynamics. Thus, the technique is perfectly suited to investigate sys-
sented by local statistical complexity, as the system is considered aems that are only little understood, and give hints, where to look for
unity and not seperated into different classes of behavior, as doneifsportant regions. The interpretation of complexity becomes increas-

thel »-criterion and vorticity. ingly dif cult as more variables are included. Hence, the complexity
) analysis of the weather simulation is executed with only two variables.
6.6 Weather and Climate Research towards a better understanding of the interactions of several

In order to test the method also with data with more complex statié@riables and their effect on the complexity eld will be subject of
tical properties, we have chosen data from a global climate simufsfure work.

tion done by the Max Planck-Institute for Meteorology (MPI-M) at
the German Climate Computing Center (DKRZ). The data was aé—CKNOWLEDGFMENTS )
quired from the "World Data Center for Climate” (WDCC) databasel he authors wish to thank the developers of NaST2D for making the
Due to time constraints we have selected a subset of only one sirfiegram publically available. Special thanks go to MichaéttBger

lated year and 15 surface variables of the atmospheric componenfasfproviding the weather simulation and for many helpful remarks.
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Fig. 5. Simulation of the earth's atmosphere (timestep 247) (top) (left) LIC of the wind 10m above the ground. (center) Evaporation. (left) Wind
LIC with transparent evaporation overlayed. (bottom) Complexity of wind and evaporation (left) as colormap on wind LIC. (center) as highlighted
regions (complexity > 8.5) over wind LIC. (right) as highlighted regions (complexity > 8.5) with wind and evaporation.
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Table 1. Timings for Isotropic Diffusion (Diffusion), Swirling Flow (Swirl), Flow Around a Cylinder (Cylinder), and Weather (weather). The following
abbreviations are used: the different Fields used for the analysis are vector (v) or scalar (s) valued; the different Implementations used are simple
(none of the ef cient implementation strategies is used), o r ef cient (all strategies are used); Past and Future Depth denote the depth of the past
and future light-cones respectively; # Representatives is the number of representative used in the classi cation pr ocess; Size of List gives the
number of candidates in the classi cation; # Omitted denotes the number of time steps being omitted, when classifying the representatives.

Dataset Fields Implementation PastDepth Future Depth # Beptatives  Size of List  # Time Steps  # Omitted Time
Cylinder  2s, 1v simple 3 3 200 - 5 0 1h 20 min
Cylinder  2s, 1v ef cient 3 3 200 700 5 0 14 min
Cylinder  2s, 1v ef cient 2 2 5000 1 1 0 58 min
Cylinder  2s, 1v ef cient 2 2 5000 700 1 0 12 min
Cylinder  2s, 1v ef cient 2 2 9000 700 300 20 4h 5min
Swirl 1s, 1v ef cient 2 2 5000 600 1 0 6 min
Diffusion 1s ef cient 2 2 5000 600 1 0 4 min
Weather 2s ef cient 3 3 4000 1000 1 0 14 min

Fig. 6. The complexity eld of the ow around a cylinder (time step
3402) with different numbers of representatives. From top to bottom:

200, 1000, 2000, 5000, 8000.

Fig. 7. Flow around a cylinder: The images are a snapshot at time
t = 33:637066(time step 3402). The rst and second image display the
velocity using LIC and a colorcoding of the norm of the velocity. The

third image shows pressure, the fourth vorticity, and the fth /.
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Fig. 8. The complexity eld of the ow around a cylinder (time step
3402) with different depths of the cones. From top to bottom (past depth/
future depth): difference between (6/6) and (1/2), complexity for (6/6),
complexity for (1/2), complexity for (2/2), difference between (2/2) and
(1/2)

s

Fig. 9. Complexity elds of the ow around a cylinder (time st ep 3402)
from top to bottom: Pressure, velocity, vorticity, pressure and velocity
and vorticity. For all computations parameters are chosen as follows:
depth of past and future cones 2, number of representatives in clas-
si cation 5000, size of candidate list in classi cation 600 , number of
time-steps 1



