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Abstract — Modern unsteady (multi-)�eld visualizations require an e ffective reduction of the data to be displayed. From a huge
amount of information the most informative parts have to be extracted. Instead of the fuzzy application dependent notion of feature, a
new approach based on information theoretic concepts is introduced in this paper to detect important regions. This is accomplished
by extending the concept of local statistical complexity from �nite state cellular automata to discretized (multi-)�e lds. Thus, informative
parts of the data can be highlighted in an application-independent, purely mathematical sense. The new measure can be applied to
unsteady multi�elds on regular grids in any application dom ain. The ability to detect and visualize important parts is demonstrated
using diffusion, �ow, and weather simulations.

Index Terms —Local statistical complexity, multi�eld visualization, time-dependent, coherent structures, feature detection, information
theory, �ow visualization.

1 INTRODUCTION

One of the strengths of scienti�c visualization is the fact that it can
communicate large amounts of information. However, images can be-
come too crowded and cluttered to see the important facts, too. High-
lighting the most informative regions is a powerful method to reduce
the amount of information displayed and guide the observers attention.

The crucial step is the extraction of these regions, often called fea-
tures. At present, there exists no general de�nition of a feature, except
for being a structure or region of relevance. Depending on the ap-
plication, e.g., computational �uid dynamics (CFD), electromagnetic
�eld simulations, weather models or simulations of biological systems,
completely different structures are of interest. In general, features are
detected by searching regions that ful�ll certain criteria, e.g., exhibit
a certain value or pattern [29]. As these criteria have to be speci�ed
in advance, further problems arise. In the case of vortex detection, for
example, no general de�nition exists. Vortices, however, are not of in-
terest because they exhibit some kind of swirling structure, but as they
have great impact on the behavior of the �ow. This property is true
for all features - they are of special importance to the system. More-
over, inside these structures it is hard to predict the system's behavior.
Starting from this point, a feature can be characterized as a region that
requires a lot of information about the past to predict its own dynam-
ics. Utilizing information theory, an objective and universal de�nition
of a feature can be given.

Shalizi et al. [36] proposed a local criterion, called local statis-
tical complexity, to measure complexity in cellular automata (CA).
Therewith features are identi�ed with regions of high local statistical
complexity. As stated in [28, 39], CA can be used to model partial dif-
ferential equations (PDEs), and vice versa. The combination of these
two approaches results in a general feature extraction method appli-
cable to any kind of system that can be described by PDEs, which
comprise the majority of computational science and engineering sim-
ulations. Besides being a generally applicable measure, two additional
advantages lie in the nature of statistical complexity that many other
feature detection methods do not have: Firstly, the method is based on
time-dependent analysis, and therefore, can easily cope with unsteady
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datasets. And secondly, from an information theoretic point of view
multi�eld analysis is required and directly realized if the system is in-
�uenced by several independent variables. In either case, the result
of the analysis is a single time-dependent scalar �eld, de�ning impor-
tance in the dataset.

2 RELATED WORK

Most datasets obtained by measurements or numerical simulations are
combinations of different quantities. Though many methods in the
�eld of scienti�c visualization focus on the analysis of a single �eld,
there are several approaches treating multiple �elds at a time. In gen-
eral, two different approaches can be distinguished. Either several
�elds are visualized in combination, or relations between the differ-
ent �elds are displayed. Examples of the �rst approach are mostly
combinations of different techniques, e.g., color coding, glyphs and/or
partially transparent maps as used by Bair et al. [3] or Kirby et al. [22]
in 2D, and modi�ed volume rendering in 3D (Andreassen [1], Riley
[30]). The analysis of correlation between different �elds belongs to
the second category and was researched amongst others by Kniss etal.
[23] and Sauber et al. [33]. A summary of different techniques canbe
found in [40].

Many multi�eld methods suffer from cluttering if the number of
�elds gets too large. An ef�cient way to reduce cluttering is to con-
centrate on relevant structures or regions, so called features. High-
lighting important regions does not only reduce the amount of data to
be displayed signi�cantly without losing important information, but
also focuses the observers attention. Consequently, features have to
be extracted �rst. As there is no general feature de�nition so far, there
exists no universal method to detect them. In the literature three differ-
ent approaches can be distinguished: image processing (e.g. Ebling et
al. [9], Heiberg et al. [17]), topological analysis (e.g. Scheuermann et
al. [34]) and physical characteristics (e.g. Garth et al. [11], Roth [32]).
A detailed description for the �eld of �ow visualization can be found
in [29].

As long as structures are relatively simple, it is possible to de�ne
features. But as soon as the systems become more complex, such as
anthills, human brains or chemical reactions, the de�nition of what is
relevant gets more dif�cult. A �rst step is to measure the system's
complexity. A large variety of measures are available ful�lling this
task, e.g., [5, 7, 12, 24, 37]. Common measures originating from the
analysis of strings of data are Shannon entropy [37] and algorithmic
information [2]. Shannon entropy is a measure of the uncertainty as-
sociated with a random variable, whereas the algorithmic information
is roughly speaking the length of the shortest program capable of gen-
erating a certain string. Both measures have in common that they are
measures of randomness. In complex systems however, randomness
is commonly not considered to be complex. Likewise, Hogg and Hu-
berman [19] state that complexity is small for completely ordered and
completely disordered patterns and reaches a maximum inbetween. A
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Fig. 1. Illustration of the past (blue) and future light-cone (red) of a sin-
gle position (black cell). In�uences propagate at speed c = 1, i.e., only
immediately adjacent neighbors affect a cell. The cones are restricted
to past-depth 3 and future-depth 2.

different approach was taken by Grassberger [12], who de�ned com-
plexity as the minimal information that would have to be stored for
optimal predictions. Based on this idea, statistical complexity [7] was
introduced identifying the complexity of a system with the amount of
information needed to specify its causal states, i.e., its classes of iden-
tical behavior. In order to analyse random �elds, a point-by-point ver-
sion was formulated by Shalizi [35] called local statistical complexity.

3 LOCAL STATISTICAL COMPLEXITY OF FINITE STATE CA

3.1 Cellular Automata

Local statistical complexity was introduced to detect coherent struc-
tures in cellular automata (CA). A CA is a discrete model of a system,
with the game of life being the best-known example. The automaton
consists of a regular uniform lattice with a discrete variable at each
cell. The con�guration of an automaton at a certain time step is com-
pletely speci�ed by the values of the variables at each site. Following
prede�ned local rules the con�guration can change at each discrete
time step. A rule de�nes which value a cell will take in the next step,
depending on the values of its neighborhood in the present. Typically,
the neighborhood of a cell consists of the cell itself and all immedi-
ately adjacent cells. An example for a rule is: If the cell has value 0
and at least two of its neighbors have value 1, change the cell's value
to 1. For each time step all values are updated simultaneously.

CA were studied since the early 1950s and used to describe a large
variety of systems, e.g., [13, 15, 16]. These models are commonly
used to gain deeper insight into the underlying system, whereof many
exhibit characteristic formations also known as coherent structures.
Coherent structures are a result of complex patterns of interaction be-
tween simple units [4] and can be observed in CA as well. Identifying
such structures automatically is still a challenging task. While most
methods rely on previous knowledge about the strucures and search
for regions ful�lling certain criteria, local statistical complexity iden-
ti�es informative regions based on information theory.

3.2 Local Statistical Complexity

The basic idea of local statistical complexity is to identify spatiotem-
poral structures that exhibit the same behavior in the future, and mea-
sure their probability of appearance. The less likely a structure ap-
pears, the higher is its complexity. In the following, local statistical
complexity as introduced by Shalizi et al. [36] is explained.

Let f (~x;t) be a discretized time-dependent n-dimensional �eld on
a regular uniform lattice. In this �eld interactions between different
space-time points propagate at speedc. Thus, all points possibly hav-
ing in�uence on a pointp = (~x;t) at timet are arranged in a so called
light-cone as illustrated in Fig. 1. The same holds for all points be-
ing in�uenced by p. The past light-cone ofp comprises all points
q = (~y; t ) with t < t and k~x � ~yk � c(t � t ). The de�nition of the
future light-cone is analogue. The con�guration of the �eld in the
past cone is denoted byl � (~x;t), the one in the future cone byl+ (~x;t).
Given a certain con�gurationl � , different associated con�gurationsl+

might appear in the �eld, each with a certain probability. These prob-
abilities are summarized in the conditional distributionP

�
l+ jl �

�
. l �

contains all the information provided by the points in the past, which
is often more than needed to predictl+ . Thus,l � can be compressed

using a functionh , which de�nes a local statistic. The goal is to �nd a
minimal suf�cient statistic[25], i.e., a function with highest compres-
sion, that still allows for optimal prediction. How informative different
statistics are, can be quanti�ed using information theory. Theinforma-
tion about variablea in variableb is
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whereP(a;b) is joint probability,P(a) is marginal probability, and
E[x] is expectation [25]. The information contained inh
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suf�cient statistic. Minimality and uniqueness are proven in [36]. The
equivalence classese

�
l �

�
are thecausal states[7, 35] of the system,

predicting the same possible futures with the same possibilities. Ase
is minimal, the causal states contain the minimal amount of informa-
tion needed to predict the system's dynamics. The minimal amount of
information of a past light-cone needed to determine its causal state,
I
�
e

�
l �

�
; l �

�
, and therewith its future dynamics, is a characteristic of

the system, and not of any particular model. Accordingly,local statis-
tical complexityis de�ned as

C(~x;t) � I
�
e

�
l � (~x;t)

�
; l � (~x;t)

�
(3)

The local complexity �eldC(~x;t) is given by� log2 P(s(~x;t)) , with
s(~x;t) being the causal state of space-time point at position~x and time
t. C = 0 holds if the �eld is either random or constant, and grows as the
�eld's dynamics become more �exible and intricate. The complexity
�eld can be computed in four steps:

1. Determine the past and future light-cones,l � and l+ , up to a
prede�ned depth.

2. Estimate the conditional distributionsP
�
l+ jl �

�
.

3. Cluster past light-cones with a similar distribution over future
light-cones using a �xed-sizec 2-test (a = 0:05) [18].

4. CalculateC(~x;t).

A more detailed description of the algorithm can be found in [36].

4 LOCAL STATISTICAL COMPLEXITY OF FINITE DIFFERENCE
SCHEMES

4.1 Example

Complexity analysis using local statistical complexity can be applied
to scienti�c simulations as �nite difference schemes, a direct analogue
to CA rules, can be used to discretize PDEs. The following simple
example of an isotropic diffusion, e.g., ion concentration in water, is
used for illustrations. Given a concentrationf (~x;t0) at each position
~x2 B at timet0, the temporal development of this concentrationf (~x;t)
is observed. The governing PDE is

¶ f
¶t

(~x;t) = DDf (~x;t) (4)

with a constant diffusion coef�cientD, time derivative¶ f
¶t (~x;t) and

LaplacianDf (~x;t). As boundary conditions constant concentrations
are assumed:f (~x;t) = f (~x;t0) for x 2 ¶B. A simple �nite difference
scheme in the plane consists of a cartesian latticeL = f 0; : : : ;255g �
f 0; : : : ;255g, a given concentrationf0 : L ! R, and the difference
equation

f (x1;x2; t + 1) =

1
16

f (x1 � 1;x2 + 1;t)+
1
8

f (x1;x2 + 1;t)+
1
16

f (x1 + 1;x2 + 1;t)+

1
8

f (x1 � 1;x2 + 0;t)+
1
4

f (x1;x2 + 0;t)+
1
8

f (x1 + 1;x2 + 0;t)+

1
16

f (x1 � 1;x2 � 1;t) +
1
8

f (x1;x2 � 1;t) +
1
16

f (x1 + 1;x2 � 1;t) (5)



which is also known as applying a binomial 3� 3 �lter to a digital
image in image processing [20]. In this exampleL is the lattice of
the CA, f contains the values over time and Eq. 5 gives the complete
rule. As c = 1, the con�gurations are as illustrated in Fig. 1. The
reader familiar with either �nite difference schemes or image process-
ing might imagine a larger stencil or �lter forc > 1. Similar schemes
can be applied to any PDE, allowing for analysis using local statistical
complexity.

4.2 Adaptations

Local statistical complexity was designed to detect coherent structures
in CA. Commonly, the cells of a CA can take only a few discrete val-
ues, e.g., from the setf 0;1;2;3g. Thus, identical light-cones can be
detected easily in Step 1 of the algorithm, as only a moderate num-
ber of con�gurations exist. If the approach is to be extended to time-
dependent �elds on regular grids generated by numerical simulations,
this strict similarity has to be altered, as two con�gurations based on
�oating-point numbers hardly ever match exactly. Thus, light-cones
with values within a certain range have to be considered equal, which
necessitates a similarity measure for light-cones.

A �rst approach might be to simply discretize the �elds. This
method establishes strict arbitrary borders within the range of val-
ues, creating an arti�cal discrimination with no basis on the real data.
Additionaly, only a few bits of information can be used to encode a
�oating-point number to have a realistic chance of observing identical
cones. Thus, the discretization is very coarse, and moreover, destroys
spatial and temporal correlation between the values, which is clearly
visible in the complexity �eld. The same holds for clustering schemes
employing kMeans or principle component analysis. Both methods
(discretization and clustering) were tested, resulting in a complexity
�eld that represents the discretization, and not the informative regions.

To avoid these problems a hierarchical method is used, subdividing
the set of light-cones into different similarity classes iteratively. The
optimized version of the algorithm is summarized in Algorithm 1. The
extraction of past and future classi�cations is accomplished in two sep-
arate steps, each using the algorithm explained below. As structurally
identical cones are required, only those points are considered that have
light-cones completely inside the �eld, i.e., the �rst and last time steps
are omitted according to the depth of the past and future light-cones
respectively, and in each time step a boundary region of width max(
pastDepth, futureDepth - 1 )�c cannot be analysed.

From the points in the inner part of the �eld those are chosen as rep-
resentatives, which exhibit largest differences in their con�gurations.
Each representative stands for a similarity class, which comprises all
con�gurations that are more similar to the current representative than
to any other one. The resulting partitioning of the con�gurations cor-
responds to a Voronoi Diagram. This partitioning is constructed itera-
tively. The �rst representative is chosen randomly from all con�gura-
tions in the restricted �eld. Afterwards, the distances between the �rst
representative and all con�gurations are computed and stored. The
con�guration that is least similar to the �rst representative is chosen
as second representative. Now, the representative/light-cone distances
have to be updated. Therefore, all con�gurations that are more similar
to the second representative than to the �rst are assigned a new, shorter
distance. Thereafter, the third representative can be determined. This
procedure is continued until a prede�ned number of representativesor
a minimal distance between representatives and remaining light-cones
is reached. The distance between each light-cone con�guration and
the closest representative is stored in a seperate vector, the so called
shortest distance vector (SDV). Each entry of the vector belongs to a
certain position in the �eld and holds the ID of the closest representa-
tive and the associated distance. The SDV is initialized by computing
the distances between the �rst representative and all other con�gura-
tions. In the update process entries are modi�ed if the corresponding
con�guration is closer to the lastly added representative than to the
stored one. The classi�cation IDs needed for the estimation of condi-
tional probabilities are stored in the SDV.

In order to compute distances between two con�gurations a distance
measure and the way multi�elds are handled have to be de�ned. Let

(a) Sample cone con�guration (b) Iterated light-cones

Fig. 2. (a) Illustration of two light-cone con�gurations in a 1D �eld. T he
red boundary encloses the future cone of T0, the blue one the past cone
of T0. The elements of each cone are numbered in successive order. (b)
Illustration of an iterated cone. The red cones are the spatial successors
of the blue ones. The values in the overlapping regions can be reused
for the second cone and need not be loaded from the �eld.

S0
i andS1

i be the con�gurations of light-conesC0 andC1 respectively,
as illustrated in Fig. 2(a) for 1D. The distance betweenC0 andC1 is
given by theL2-norm:

kC0 � C1k =
r

å
i

kS0
i � S1

i k2 (6)

kS0
i � S1

i k is the L2-norm for scalar values and vectors. An elliptic
similarity function to compare vectors was proposed in [38]. Unlike
the L2-norm, this measure favors certain directions, which foils the
information theoretic approach. Moreover, the triangle inequality does
not hold, whereby an important part of the optimization (see Sec. 5) is
not applicable. Thus, theL2-norm is taken as similarity measure.

If multiple �elds are used, the cones are extended to multi light-
conesMC, i.e., each multi light-cone consists of a vector of light-cones
Cj , one for each �eld. To make the different subcones comparable, the
�elds have to be normalized in advance, i.e., each entry in the �eld
has to be divided by the norm of the largest one. The joint distance is
given by

kMC0 � MC1k =
r

å
j

kC0
j � C1

j k
2 =

r
å

j
å
i

kS0
i j � S1

i j k
2 (7)

Steps 2 to 4 of the algorithm can be applied directly, as they operate
on the different classes of cones, and not on the individual values.

5 EFFICIENT IMPLEMENTATION

The naive implementation of the light-cone classi�cation is only ap-
plicable to �elds of rather small size as demonstrated by the timings in
Table 1. To handle larger time-dependent datasets in reasonable time,
several aspects of an ef�cient implementation are proposed.

Whenever a cone is added to the list of representatives, all entries
in the SDV have to be checked. Therefore, the distance between each
cone in the �eld and the new representative is computed. It would be
convenient to store all cone con�gurations in the �eld, which is not
possible, since each cone consists of

past:
n� 1

å
i= 0

(3+ 2i)d future:
n� 1

å
i= 0

(1+ 2i)d (8)

elements, n being the depth of the cone, d the dimension of the lattice
(2 or 3), andc = 1. Using light-cones of depth 3, would already mul-
tiply the memory usage by a factor of 83 in 2D, a crucial factor for
large datasets with many time steps. As the con�gurations cannot be
stored, they have to be rebuilt in each iteration. Using the fact that two
succeeding cones have a large overlap, as illustrated in Fig. 2(b) for
a 1D �eld, a single cone can be used that is iterated through the �eld.
Thus, most of the time only a subset of the values has to be exchanged.

After the setup of the cone con�guration, the distance to the new
representative has to be computed, requiring 83 scalar or vector dis-
tances to be computed for cone depth 3,d = 2. As this has to be done
for each representative and each position in each time step, the number
of calculations of cone distances gets enormous. This can be reduced
signi�cantly by applying the triangle inequality.

krc � rnk � k l � rck+ kl � rnk (9)



Algorithm 1 Classi�cation of light-cones
The �eld to be analysed is de�ned on a regular grid of
nbXPos� nbYPos positions, and nbTimeSteps time steps.
pastDepth depth of past light-cones
futureDepth depth of future light-cones
offset max( pastDepth, futureDepth - 1 )� c
n  ( nbXPos - 2�offset )� ( nbYPos - 2�offset )�

( nbTimeSteps - pastDepth - ( futureDepth - 1 ))

r  randomly chosen representative
add r to the list of representatives
for i = 1 . . . ndo

SDV[i]  distance between r and theith light-cone
representative[i]  0

end for
init the list of candidates

while stopCriterion not ful�lleddo
if SDV[lastCandidate]> maxExcludedDistthen

add lastCandidate to the list of representatives
update the distances of the candidates

else
update the SDV
compute a new list of candidates

end if
end while
update the SDV

The inequality compares the three distances between the following
cone con�gurations: the current light-cone (l ), the closest represen-
tative (rc), and the new representative (rn): Thus, the new repre-
sentative can only be closer to the con�guration than the old one
(kl � rnk < kl � rck) if Eq. 10 holds.

krc � rnk < 2kl � rck (10)

To employ this property, a matrix of all inter-representative distances
is stored. Entry(i; j) of the matrix stores the distance between rep-
resentativesi and j. Whenever a new representative is selected, an
additional row and column has to be added to the matrix. Thus, both
quantities of Eq. 10 are computed only once.krc � rnk is store in the
matrix andkl � rck in the SDV. The costly computation of the new
distancekl � rnk is only performed if Eq. 10 holds. Thus, many com-
parisons can be omitted at very low cost.

So far, new representatives are chosen from all con�gurations in
the �eld, although there are many con�gurations that are very similar
to earlier de�ned representatives. Note that distances in the SDV can
only become shorter by adding new representatives. If new represen-
tatives were chosen only from the con�gurations most dissimilar to se-
lected representatives, the costs for the update can be further reduced.
Accordingly, a list of potential representatives is stored. From the SDV
then cones with the longest distances are identi�ed and their con�gu-
rations and minimal distances are stored in a seperate list.n is a value
speci�ed by the user, e.g., if 3000 representatives are to be detected,
lists of 600 cones were used. As an optimal choice ofn depends highly
on the dynamics of the �eld, no optimal value can be prede�ned. Ad-
ditionally, the worst excluded distance is stored, which is then+ 1st
longest distance in the SDV. The iteration now only operates on the list
of potential representatives. Whenever a new representative is added,
only the minimal distances of the candidates are updated, which re-
duces the number of updates in a dataset with 100,000 positions from
100,000 to 600. Afterwards, a new representative is chosen from the
list. This procedure is continued until the worst distance in the can-
didate list is shorter than the worst excluded one. As distances can
only become shorter by adding new candidates, the worst excluded
distance cannot become larger. For the given example of list length
600 approximately 150 representatives were added, before a new list
had to be computed.

All improvements explained so far do not change the results, as they
are just more ef�cient techniques and no heuristics. Nevertheless, for
long time series the computational effort might still be too large. To
decrease workload, the cone classi�cation can be reduced to a subset
of time-steps, i.e., representatives are chosen from everyith time-step.
If the con�gurations in the �eld change at moderate speed, no essential
structures are missed. The intermediate time-steps are classi�ed in a
second step. Again, the triangle inequality can be used to identify the
closest representative. The shortest representative from the previous
time-step is taken as an estimation of the shortest distance. From the
list of representatives only those are compared to the current light-
cone, that ful�ll Eq. 10.

6 RESULTS AND DISCUSSION

6.1 In�uence of the Parameters

The computation of the causal states depends on two parameters: the
depth of the light cones, and the number of representatives. The “Flow
around a cylinder” (Section 6.5) is used to illustrate their in�uence.

Fig. 8 shows the complexity �elds for different light-cone depths.
The complexity �eld for the minimal con�gurations with past depth 1
and future depth 2 is shown in the third image. It already captures all
relevant structures. Increasing the past depth to 2 results in smoother
structures, as the region of in�uence becomes larger and single devia-
tions are evened out. The difference between the two �elds is shown
in the �fth image. Blue regions indicate a higher complexity in the im-
age with the smaller cones, red regions higher complexity in the image
with deeper cones. The difference �eld is quite homogeneous, reveal-
ing the uniform modi�cation of the �eld. Cones of depth 6 are used
in the second image, which appears smoother than the other two. The
difference �eld gives the same results as in the previous case. Thus,
the depth of the cones has no signi�cant in�uence on the result. The
deeper the cones the smoother the image. To decrease computational
costs, cones of depth 2 were chosen for all examples.

Just as the depth of light-cones, the number of representatives has
no signi�cant in�uence on the results. Fig. 6 shows the same dataset
with different numbers of representatives used in the computation of
complexity. If too few representatives are computed the relevant struc-
tures are visible but poorly developed. In the case of 8000 representa-
tives certain regions are overrepresented, resulting in a kind of over�t-
ting. Visually best results could be achieved when limiting the number
of representatives to approximately 5000. Thus, the choice of the pa-
rameters has no great in�uence on the qualitative results, they mainly
determine the quality of the resulting images.

6.2 Isotropic Diffusion

An isotropic diffusion, simulated using �nite differences as explained
in Section 4, is a simple example of a large variety of diffusion pro-
cesses, i.e., equalization of differences in concentration, heat, matter
or momentum, appearing in nature. The dataset is simulated by re-
peated �ltering using a binomial �lter. In the diffusion �eld, the cells
at the left border are set to 1, and those at the right border to 0. Upper
and lower boundaries are initialized with linearly decreasing values
that range from 1 to 0. The inner part is initialized with random values
between 0.0 and 1.0. The process displayed in the upper row of Fig.
3, is de�ned on a square lattice with 256 cells in each direction. 1202
steps are simulated.

The lower row in Fig. 3 shows the evolution of local statistical com-
plexity. For each image 5000 representatives are determined, having
past and future depth 2. The �rst image (top) shows the diffusion pro-
cess at a very early stage, where large differences in concentrations
are visible. Although, the image seems rather random, several dom-
inating regions are already present as can be seen in the complexity
�eld below. In the �rst few steps the concentrations of neighboring
cells are equalized very quickly, forming a relative homogeneous re-
gion in the inner part (light blue). After 200 iterations, the boundaries
have become the dominating part of the system, with the corners being
the most informative regions. The boundary region in the complexity
�eld indicates, how far inside the system the diffusion process has ap-
proached. A gap in the boundary region can be observed at the center



of the upper and lower boundary region. In these parts, the constant
gradient on the boundary already has the average value of 0.5. Several
dominant regions can be distinguished in the inner part, being relevant
up to the �nal step. The two images of time step 1200 illustrate very
well, that not only the propagating front of diffusion is important, but
the whole strip starting from the boundary.

6.3 Local Statistical Complexity of CFD Datasets

The diffusion example perfectly matches the requirements of the
method, but is rather trivial from an application point of view. When
analysing simulations from the �eld of �uid dynamics, local statistical
complexity has to be applied carefully.

Many computational �uid dynamic (CFD) datasets are solutions to
the Navier-Stokes Equations for incompressible �ow:

¶
¶t

~u+ ( ~u� Ñ)~u+ Ñp =
1
Re

D~u+ ~g (11)

Ñ �~u = 0 (12)

where~u is the velocity, p is the pressure,~g are body forces, andRe
is the Reynolds number [14]. In incompressible �ow, density is as-
sumed to be constant,r (~x;t) = r ¥ = const. When simulating a �uid
using these equations, pressure is used to ensure, that divergence is0,
i.e., Eq. 12 holds. Therefore, in each iteration of the simulation, the
pressure is adapted all over the �eld, whereby pressure is no longer a
local quantity, andc = ¥ for the light-cones. Thus, the cones would
have to comprise the whole �eld in order to capture all information
affecting the current position. Analyzing only the velocity by means
of local statistical complexity, neglects important information, as ve-
locity and pressure are coupled variables. Hence, an exact solution to
incompressible �ow systems is not possible using the current method.
In Sec. 6.5 the complexity �elds of velocity, pressure, and of velocity
and pressure are analysed. While the investigation of the individual
�elds is incomplete, the analysis of both �elds gives very good ap-
proximations of the relevant structures even with small cones (c = 1)
for pressure. An alternative approach is to use the vorticity, which is
not in�uenced by the pressure. Examples of both approaches will be
shown in the following two sections in context.

It should be noted that this restriction holds only for incompressible
�ow simulations. Finite difference simulations of compressible �ow
�t perfectly the requirements of local statistical complexity analysis.

6.4 Swirling Flow

The development of a recirculation zone in a swirling �ow is investi-
gated by numerical simulation. This type of �ow is relevant to several
applications where residence time is important to enable mixing and
chemical reactions.

The unsteady �ow in a swirling jet is simulated with an accurate
�nite-difference method. The Navier-Stokes equations for an incom-
pressible, Newtonian �uid are set up in cylindrical coordinates assum-
ing axi-symmetry in terms of streamfunction and azimuthal vorticity.
All equations are dimensionless containing the Reynolds number Re
and the swirl numberSas de�ned by Billant et al. [6]

Re�
vz(0;z0)D

n
S�

2vq (R=2;z0)
vz(0;z0)

(13)

wherez0 = 0:4D, D = 2R is the nozzle diameter andn the kinematic
viscosity, as dimensionless parameters.

The PDEs are discretized with fourth order central difference opera-
tors for the non-convective terms and with a �fth order, upwind-biased
operator [26] for the convective terms. The time integrator is an ex-
plicit s-stage, state space Runge-Kutta method ([8], [21]), the present
method is fourth order accurate withs= 5. The time step is controlled
by the minimum of two criteria: The limit set by linearized stability
analysis and the limit set by the error norms of an embedded third or-
der Runge-Kutta scheme [8]. The Helmholtz PDE for streamfunction
Ỹ (r;z;t) is solved with an iterative method using deferred corrections
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Fig. 3. An isotropic diffusion with �xed concentrations at t he boundaries,
inducing a gradient from the left to the right handside. The upper row
shows the concentrations at time step 2, 200, 500, and 1200. Regions
of high importance for the system's dynamics, extracted using local sta-
tistical complexity, are displayed in the lower row.

and LU-decomposition of the coef�cient matrix. The deferred correc-
tions method is designed to reduce the bandwidth of the coef�cient
matrix. It converges rapidly using about ten to twenty steps.

The �ow domain is the meridional planeD = f (r;z) : 0 � r � R;0 �
z� Lg with R= 5D, L = 8D andD denoting the nozzle diameter at the
entrance boundary. The �ow domain is mapped onto the unit rectangle
which is discretized with constant spacing. The mapping is separable
and allows to a limited extent crowding of grid points in regions of in-
terest. The present simulation usesnr = 91 andnz = 175 grid points in
radial and axial directions. The boundary conditions are of Dirichlet
type at the entrance section and the outer boundary and at the exit con-
vective conditions are imposed for the azimuthal vorticity. The initial
conditions are stagnant �ow and the entrance conditions are smoothly
ramped up to their asymptotic values within four time units.

The simulation results forRe= 103, S= 1:1 (within the range of the
experiments [6], [27]) used for the complexity analysis are ten time
steps after the formation of the recirculation bubble (which forms at
t = 6:02) at timest = 33:63092 tot = 33:70560. The �ow is unsteady
and does not approach a steady asymptotic state as the velocity and
vorticity �elds show (Fig. 4(top)). Fig. 4(top/left) shows a LIC of the
velocity �eld, featuring several vortices. When overlayed with a trans-
parent map, hiding regions of very low velocity, a better impression of
the �ow is provided, as many vortices are detected in regions close to
noise. Local statistical complexity is computed for velocity and vortic-
ity separately (Fig. 4(bottom/ middle and right)), and for both �elds at
a time (Fig. 4(bottom/left)). The main structures that have developed
up to the instant of the analysis are a conical shear region, outlined
in blue in Fig. 4(top/left), and several ringlike vortex structures, one
being marked with red points in Fig. 4(top/left). Both features are
detected by local statistical complexity. Only minor differences ex-
ist between the analysis of velocity, vorticity, and the combination of
both �elds. This might be due to the fact, that the system's dynamics
are quite complex. Thus, it is easier to distinguish between regions,
where it is dif�cult to predict the system's future dynamics, and those
where it is easy. As this differentiation is quite clear, it is present in
both �elds. Unlike vorticity, local statistical complexity marks both
features as equally complex. Both, the conical shear region, as well as
the vortex structure are assigned highest complexity, while the vortices
exhibit only small vorticity, compared to the shear �ow.

6.5 Flow Around a Cylinder

The �ow around a cylinder is a widely researched and well understood
problem in �uid mechanics. Over a certain range of Reynolds num-
bers, the �ow becomes asymmetric and unsteady, forming the well
known von Ḱarmán vortex street [14]. The �ow is simulated using
NaSt2D, the solver explained in [14], and available online at [10]. The
con�guration �le for a �ow around a cylinder provided with the im-
plementation is used for the simulation, ensuring correct settings. The
grid consists of 660� 120 positions. 4500 time steps are simulated,
ranging from timest = 0:0 to t = 44:53. The simulation output con-
sists of three �elds: velocity, pressure, and vorticity, which are visual-
ized for time step 3402 in Fig. 7.
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Fig. 4. (top) Illustrations of the swirling �ow: (left) (left)LIC of the velocity of the swirling �ow. The conical sh ear region is outlined in blue. Several
ringlike vortex structures can be observed, one being marked by red points. (right) The LIC is overlayed by a transparent mask, hiding regions of
small velocity. Thus, the structure of the �ow is clari�ed. (middle) Norm of the velocity. (right) Vorticity.
(bottom) Local statistical complexity �elds of the swirling �ow from left to right: velocity and vorticity, velocity, vorticity.

The corresponding local statistical complexity �elds are displayed
in Fig. 9. As stated earlier, the presented method cannot be directly
applied to the pressure. Fig. 9(top) shows the complexity of the pres-
sure, using light-cones withc= 1. It is clearly visible, that the analysis
lacks information, as the structures are no longer continuous and fea-
ture holes. The complexity �eld of the velocity (Fig. 9(second)), high-
lights the important structures in the �ow. Most dominant is the re-
gion, where the �ow hits the object, stretching to the seperation struc-
tures behind the cylinder. The region where vortices originate is also
marked in dark blue, as well as the current positions of vorticies in the
vortex street. A ribbon shaped like a sinus runs through the whole vor-
tex street, linking the periodically created vortices. The complex re-
gions at the top and bottom mark regions of shear �ow, induced by the
boundaries. In general, the complexity �eld of the vorticity exhibits
the same structures. Nevertheless, in both images the structures are
not fully developed, as information is missing. Fig. 9(bottom) shows
the complexity of all three �elds. As more information is included in
this analysis, the relevant regions get more dominant and smoother.

The �fth image in Fig. 7 shows thel 2-�eld of the current time step.
The l 2 criterion is a standard technique to visualize vortices [32]. A
vortex is de�ned as the region wherel 2 < 0. Thus, the blue regions in
Fig. 7 (bottom) are of relevance, featuring the position of the vortices
in the von Ḱarmán vortex street, the regions of separation at both sides
of the cylinder, and the shear �ow at the boundary. The positions of the
vortices match perfectly the regions of highest complexity in the sinus
shaped ribbon. The major advantages ofl 2 and vorticity plots are its
short computation times (only a few seconds). As long as the �ow's
dynamic is rather simple, these methods are more advantageous. The
well known and simple examples were chosen to prove the correctness
of local statistical complexity. To tap its full potential, more compli-
cated �ows are needed that are often simulated on unstructured grids
that cannot be analysed so far. An advantage of complexity analysis
is the fact that it shows smoother structures, providing a good context.
The interaction of the �ow behind the cylinder is more clearly repre-
sented by local statistical complexity, as the system is considered as a
unity and not seperated into different classes of behavior, as done by
the l 2-criterion and vorticity.

6.6 Weather and Climate

In order to test the method also with data with more complex statis-
tical properties, we have chosen data from a global climate simula-
tion done by the Max Planck-Institute for Meteorology (MPI-M) at
the German Climate Computing Center (DKRZ). The data was ac-
quired from the ”World Data Center for Climate” (WDCC) database.
Due to time constraints we have selected a subset of only one simu-
lated year and 15 surface variables of the atmospheric component of

the coupled atmosphere-ocean-model ECHAM / MPI-OM [31]. With
a time resolution of 6 hours the data includes the daily cycle. The
spatial resolution is approximately 200 km.

Fig. 7(top) shows the wind and the evaporation of timestep 247.
The combination of both �elds shows that a visual analysis is rather
dif�cult as the system is quite complex and no simple structures attract
attention. When analyzing these two �elds with local statistical com-
plexity several dominant regions appear (Fig. 7(bottom)). Timings are
given in Table 1. A region well known for its high spatio-temporal
variability is the north atlantic area. Storm systems often develop in
the western part of the atlantic, and many of them move across the
north atlantic towards europe. Storm activity is highly correlated with
windspeed and other meteorological parameters like vorticity, precipi-
tation and evaporation. Due to the chaotic behavior of the weather and
climate system, the deterministic forecast of storm tracks for a couple
of days is still a scienti�c challenge. Our method highlights especially
those features of the weather system which occur irregularly and hence
are dif�cult to forecast.

The video shows the temporal development of wind and evapora-
tion. The diurnal cycle of evaporation is clearly visible. In a long-term
analysis using local statistical complexity this regularity should be de-
tected and classi�ed as little complex. As can be seen in the complex-
ity video of the weather, the current method is not capable of �ltering
these events, as there are too large �uctuations in the daily curves. The
detection of regular events will be part of future work.

7 CONCLUSION AND FUTURE WORK

In this paper, local statistical complexity is introduced, as a method
to detect important regions in systems that can be described by PDEs.
Four examples are used to illustrate the new technique, which detects
crucial structures in the system automatically. Unlike most feature de-
tection methods, local statistical complexity does not rely on speci�-
cations given by the users, but estimates complexity from the system's
dynamics. Thus, the technique is perfectly suited to investigate sys-
tems that are only little understood, and give hints, where to look for
important regions. The interpretation of complexity becomes increas-
ingly dif�cult as more variables are included. Hence, the complexity
analysis of the weather simulation is executed with only two variables.
Research towards a better understanding of the interactions of several
variables and their effect on the complexity �eld will be subject of
future work.
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In M. Morvan andÉ. Rémila, editors,Discrete Models for Complex Sys-
tems, DMCS'03, volume AB ofDMTCS Proceedings, pages 11–30. Dis-
crete Mathematics and Theoretical Computer Science, 2003.

[36] C. R. Shalizi, R. Haslinger, J.-B. Rouquier, K. L. Klinkner, and C. Moore.
Automatic �lters for the detection of coherent structure in spatiotemporal
systems.Physical Review E, 73:036104, 2006.

[37] C. E. Shannon. A mathematical theory of communication.Bell System
Technical Journal, 27:379–423, July 1948.

[38] A. Telea and J. J. van Wijk. Simpli�ed representation of vector �elds.
In VIS '99: Proceedings of the conference on Visualization '99, pages
35–42, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[39] S. Wolfram. Cellular Automata and Complexity: Collected Papers.
Addison-Wesley, 1994.

[40] P. Wong and R. Bergeron.Years of Multidimensional Multivariate Visu-
alization. Scienti�c Visualization - Overviews, Methodologies and Tech-
niques, IEEE Computer Society Press., 1997.



Table 1. Timings for Isotropic Diffusion (Diffusion), Swirling Flow (Swirl), Flow Around a Cylinder (Cylinder), and Weather (weather). The following
abbreviations are used: the different Fields used for the analysis are vector (v) or scalar (s) valued; the different Implementations used are simple
(none of the ef�cient implementation strategies is used), o r ef�cient (all strategies are used); Past and Future Depth denote the depth of the past
and future light-cones respectively; # Representatives is the number of representative used in the classi�cation pr ocess; Size of List gives the
number of candidates in the classi�cation; # Omitted denotes the number of time steps being omitted, when classifying the representatives.

Dataset Fields Implementation Past Depth Future Depth # Representatives Size of List # Time Steps # Omitted Time

Cylinder 2s, 1v simple 3 3 200 - 5 0 1 h 20 min
Cylinder 2s, 1v ef�cient 3 3 200 700 5 0 14 min
Cylinder 2s, 1v ef�cient 2 2 5000 1 1 0 58 min
Cylinder 2s, 1v ef�cient 2 2 5000 700 1 0 12 min
Cylinder 2s, 1v ef�cient 2 2 9000 700 300 20 4h 5min

Swirl 1s, 1v ef�cient 2 2 5000 600 1 0 6 min
Diffusion 1s ef�cient 2 2 5000 600 1 0 4 min
Weather 2s ef�cient 3 3 4000 1000 1 0 14 min
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Fig. 6. The complexity �eld of the �ow around a cylinder (time step
3402) with different numbers of representatives. From top to bottom:
200, 1000, 2000, 5000, 8000.
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Fig. 7. Flow around a cylinder: The images are a snapshot at time
t = 33:637066(time step 3402). The �rst and second image display the
velocity using LIC and a colorcoding of the norm of the velocity. The
third image shows pressure, the fourth vorticity, and the �f th l 2.
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Fig. 8. The complexity �eld of the �ow around a cylinder (time step
3402) with different depths of the cones. From top to bottom (past depth/
future depth): difference between (6/6) and (1/2), complexity for (6/6),
complexity for (1/2), complexity for (2/2), difference between (2/2) and
(1/2)
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Fig. 9. Complexity �elds of the �ow around a cylinder (time st ep 3402)
from top to bottom: Pressure, velocity, vorticity, pressure and velocity
and vorticity. For all computations parameters are chosen as follows:
depth of past and future cones 2, number of representatives in clas-
si�cation 5000, size of candidate list in classi�cation 600 , number of
time-steps 1


