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Abstract: Hyperreconfigurable architectures can change their reconfiguration capa-
bilities dynamically at run-time. For reconfiguration they use two types of reconfig-
uration steps: i) in hyperreconfiguration steps they change their ability for reconfig-
uration, ii) in ordinary reconfiguration steps they reconfigure the actual contexts of a
computation within the limits that have been set by the preceding hyperreconfiguration
step. Hyperreconfigurable architectures have originally been introduced to increase the
speed of run-time reconfiguration. In this paper we show that the high flexibility with
respect to runtime reconfiguration makes hyperreconfigurable architectures well suited
for the control of processes that demand varying amounts of supervision. One advan-
tage of hyperreconfiguration is that the run-time of a control task can be influenced
without changing the task itself but only by using different variants of other control
tasks that run in parallel. To illustrate the concepts we present the results of simula-
tions with a small hyperreconfigurable architecture where counter and adder control
tasks run in parallel.

1 Introduction

Reconfigurable systems offer the advantage of fast hardware execution with the possibil-
ity to easily modify the hardware computations. Especially attractive is the high flexibil-
ity offered by run-time reconfigurable systems that can dynamically change their internal
communication structure and/or their functional units.

Hyperreconfiguration is a new concept for run-time reconfiguration that has been pro-
posed recently to cope with the problem of the increasing amount of reconfiguration data
that are necessary to specify the behavior of modern run-time reconfigurable hardware (see
[Midd03, LaMi044d). Other approaches that have been proposed are: i) the use of off-line
compression methods applied to the reconfiguration bit stream before it is loaded onto
the system[DaPr01 HLR99], ii) to compute the bits which are necessary for reconfigu-
ration directly on chip KoeTe02 SWMPO0Q WaDa0(), iii) to clone configurations that
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are already on the machin®dBu99, iv) to perform the reconfiguration incrementally
[LeWwo03.

Since reconfiguration data have to be transferred for every reconfiguration step this large
amount of information transfer is especially critical for computations that exploit the full
capacity of dynamically reconfigurable architectures by frequent reconfigurations. The
basic principle of the hyperreconfiguration approach is to make the ability for reconfig-
uration itself reconfigurable so that ideally only those parts of the architecture that are
needed for reconfiguration are actually available and therefore have to be supplied with re-
configuration data. The reconfiguration potential of an architecture can then be decreased
(increased) during such periods of a computation where less (more) reconfiguration fea-
tures are required. Only the new states of the actually available reconfigurable units have
to be defined during a reconfiguration step and therefore the amount of necessary recon-
figuration information only depends on the reconfiguration potential that is actually used.
For reconfiguration hyperreconfigurable architectures use in addition to the ordinary re-
configuration steps a second type of reconfiguration steps which determine the actual re-
configuration potential of the architecture. These steps are dajlperreconfiguration

steps

Hyperreconfigurable architectures have originally been introduced with a focus on increas-
ing the speed of run-time reconfiguration. In this paper we show that the high flexibil-
ity with respect to run-time reconfiguration makes hyperreconfigurable architectures well
suited to implement controllers for processes with variable demands for supervision. The
aim of this paper is not to discuss real life applications but to explain the general concept
and to illustrate it with a rudimentary sample architecture.

In the next Sectio2 we describe hyperreconfigurable architectures in general. In Séction
we introduce the concept of using hyperreconfigurable architecture for implementing con-
trollers for processes with variable demands of supervision. Our example architecture is
presented in SectioA. Section5 discusses the results of simulated test runs with the
example architecture. The paper ends with a conclusion in Se&tion

2 Hyperreconfigurable Architectures

In this section we give an abstract definition of hyperreconfigurable machines and then
describe a specific model for such architectures (for more details and other models see
[LaMiO44d]). An example architecture that illustrates the definitions is presented in Sec-
tion 4.

A reconfigurable system is called hyperreconfigurable when its ability for reconfiguration
is reconfigurable itself {lidd03]). Hyperreconfigurable architectures use two types of
reconfiguration steps: rdinary reconfiguration stepallow to change the context of

an algorithm during run-time where the context determines the communication structure
and/or the functional units, iflyperreconfiguration stepalow to define the potential for
reconfiguration (e.g. the number and size of available reconfigurable units or the properties
of the switch boxes for defining connections) that is available for the following ordinary



reconfiguration steps.

In order to guarantee that enough reconfiguration potential is available for each reconfig-
uration step of an algorithm we assume that an algorithm/computation is characterized
by a sequence of context requirements that specifies for every reconfiguration step which
reconfigurable features it needs. Formally,debe the set of possible context require-
ments for a hyperreconfigurable machine then an algorithm is characterized by a sequence
C =c...cowithe € C,i € [1: n]. The context requirements are worst case re-
quirements that guaranty a successful computation when satisfied. The actual demand of
a computation during runtime might be lower and since it depends on the data it cannot
be determined exactly in advance. When the meaning is clear we call the context require-
ments of an algorithm/computation sometimes simply its contexts. The reason is that each
context requirement corresponds to exactly one new context that will be realized during
runtime by a reconfiguration operation. This is possible only when the machine is in a
state (more exactly in a hypercontext — see definition below) that provides the necessary
reconfigurable features, i.e., it satisfies the corresponding context requirement.

A hypercontexis characterized by the subset of context requiremerdstivat are possi-

ble under it. LetH be the set of possible hypercontexts for a machine. For a hypercontext
h € H leth(C) C C be the subset of context requirements that are satisfiéd e set

h(C) is called thecontext sebf h. For a sequence, ... ¢, of context requirements and

a hypercontext letc; ... ¢, C h(C) denote the fact that for each contexti € [1 : k],

¢i € h(C) holds. For each hyperconteite H there exist the following two costs: i)
init(h) are the costs to perform a hyperreconfiguration that brings the machine into hyper-
contexth, ii) cost(h) are the costs for an ordinary reconfiguration step when the machine
is in hypercontext. The costs might be measured as the number of (hyper)reconfiguration
bits that have to be loaded on the machine or as the time for loading them. Thus, during
the execution of an algorithm/computation a machine performs operdtidis . . h,. S,
wherehy, ..., h, are hyperreconfigurations arffj stands for a sequence of reconfigura-
tions which use only those parts of the machine that are available viithin

Different cost models for hyperreconfigurable machines have been discuskaiio44].

In this paper we use only the so call8aitch modeWwhich allows to decide for each re-
configuration bit whether it is contained in the hypercontext or not. Thus it is assumed that
there exists a seX = {1, ...,z,} of small reconfigurable units which we call switches.
The set of context requiremersand the set of hypercontexts are the set of all subsets

of X, i.e. C = H = Pow(X). Consider a sequencg = c; ...c,, of context require-
ments withe; € C, i € [1 : m]. For switchz € X the relationz € h(C) holds, when

x C h. During a reconfiguration operation the state of each available switch has to be
defined. Hence, the costs of reconfiguration are simply the number of available reconfig-
urable units, i.e.cost(h) = |h|, where|h| is the size ofr, i.e. the number of switches
available inh. Letinit(h) = w > 0 for eachh € H.

Thus during the execution of an algorithm/computation with sequéhoé context re-
guirements a machines performs operatiéns; ... h,.S, wherehy, ..., h,. are hyper-
reconfigurations and; stands for a sequence of reconfigurations so¢hat S; ... S,.
The total reconfiguration time of a computation is measured as
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where|S;| is the length ofS;, i.e., the number of context requirementsSin

The problem to find for a given sequere= ¢; . .. ¢, of context requirements a partition

of C into substringsSy, ..., S, (i.,e. C = Sy ...S,) and hypercontextB, ..., h,.,r > 1

such thatS; C h,;(C) and)__, (init(h;) + cost(h;) - |S;|) is minimized is calledPartition

into Hypercontext§PHC) problem. In[[aMiO44 an optimalO(min{n, m} - m?) time
algorithm for solving the PHC problem under the Switch model was given. It was also
shown that the PHC problem under a more general cost measure becomes NP-complete.

3 A Flexible Control System

In this section we consider the problem of using a hyperreconfigurable machine for con-
trolling processes that need a variable amount of supervision. We assume that several con-
trol tasks run on the machine for this purpose (compare Figurgach task is given input

data from the processes that it controls and it delivers output data to these processes. The
reconfigurable machine is (hyper)reconfigured with (hyper)reconfiguration data — typi-
cally a stream of (hyper)reconfiguration bits — that are loaded from a host computer. We
assume that there is a task selection process on the host computer which selects the control
tasks that run on the reconfigurable machine. The task selection process gets control in-
formation from the processes that are controlled by the machine. The control information
can indicate for example that other control tasks are needed than those that are currently
running. It can also indicate that different control information is needed (which might
lead to reconfiguration of the running tasks) or that the speed of feedback from the control
process needs to be changed.

Hyperreconfigurable Machine

Host Task 1

Hyperreconfiguration Bits

Hyper-/reconfiguration
Control

f Task3 [~

Output Data

Rekonfiguration Bits

Task Selection

Control Information Input Data

Figure 1: A hyperreconfigurable machine as a control system: general scheme and flow of informa-
tion

Depending on the tasks selected, the hyper/reconfiguration control process computes the
optimal times for hyperreconfiguration steps and the corresponding hypercontexts that



are used. Then it generates the hyperreconfiguration bitstreams and the reconfiguration
bitstreams. These are then loaded onto the reconfigurable machine at the respective time
steps. In some cases it might be necessary that the task selection process obtains a feedback
on the (hyper)reconfiguration times that have been computed by the hyper/-reconfiguration
control so that it can reconsider and possibly change its former task selection based on this
information.

An interesting aspect of hyperreconfigurable machines is that the reconfiguration time for
a set of tasks depends on the chosen hypercontext. This offers the possibility to change
the run-time of a task without changing the task itself. One possibility is to exchange
some of the other control tasks by variants that need less reconfiguration resources. Then
other hypercontexts can be used under which altogether less reconfiguration information is
needed for the tasks. This aspect of hyperreconfigurable architectures has not been studied
before — in LaMiO4a, LaMi04b] only fixed task scenarios were considered.

Hyper-
reconfiguration

:J DeMUX

MUX

Registers

Figure 2: SHyRA architecture

4 The Example Architecture

An example architecture for a simple control system is described in this section. The ma-
chine is called the Simple HYperReconfigurable Architecture (SHyRA). As depicted in
Figure 2 it has a set of 18 reconfigurable Look-Up Tables (LUTs) each of which has a
3-bit input and a 1-bit output port. For storing information a set of 73 registers is used.
Different connections between the LUTs and the registers can be established over a recon-
figurable 18:73 multiplexer and a 73:54 demultiplexer. The small number of LUTs poses
a bottleneck for tasks and on this machine. Therefore, the control tasks used for the test
runs have to make extensive use of reconfigurations.

Two types of simple control tasks are used for the test run. For one type of control task



Pseudo Code

Reconfiguration Data

LUT1 LUT2 LUT1 LUT2
NOTO0,0,0 NOT8,0,0 01010101 01010101
XOR1,1,8 AND S, 8,1 01100110 00010001
XOR 2,2,8 AND 8, 8, 2 01100110 00010001
XOR 3, 3,8 AND 8§, 8, 3 01100110 00010001

EQ9,0,4 ONES, 8,0 10011001 11111111
EQ9,1,5 AND 8§, 8,9 10011001 00010001
EQ9 2,6 AND S8, 8,9 10011001 00010001
EQ9, 3,7 AND 8§, 8,9 10011001 00010001
NULL9,0,0 AND 8, 8,9 00000000 00010001
CMOV 0, 9, 8 CMOV 1,9,8 01010011 01010011
CMOV 2,9, 8 CMOV 3,9, 8 01010011 01010011

Table 1: SHyRA 4 bit counter: pseudo code and corresponding reconfiguration bits for the two LUTs
used

several variants have been implemented that differ in the number of LUTs they need and
the number of computational cycles. One control task is a 4 bit binary counter with a
variable upper bound. The counter increments its value that is stored in the registers one
to four until it has reached the value that is stored in registers five to eight. The other
control task is a 4 bit binary adder and the different variants use 9, 8, 7, 6, 5, or 4 LUTs
respectively. The number of computational cycles that are used by these adders is 5, 5, 6,
7,7, and 8 cycles respectively.

As all computational operations on SHyRA can only be performed through the use of
LUTs neither the counter nor the adder can be implemented to run in one computational
cycle. Hence, the design of these algorithms is time partitioned. As an example the op-
erations done for the counter are shown in Tabl& he first two columns give a pseudo
assembly code of the operations that are performed by the two LUTs. The notation used for
an instruction iOPCODEOUT_REGIN_REG1, IN_REG2. The remaining two columns

detail the reconfiguration data used to reconfigure the LUTs. Note, that in addition there is
also reconfiguration information for the multiplexer and the demultiplexer. The two input
signals used in the pseudo code are specified in the first two nibbles and the third is set
to zero unless €MO\bperation is executed which requires the previous value of the out-
put register as well. We analyzed the sequence of reconfigurations under the MT-Switch
model where we assume that there are 48 switches (each corresponding to one of the 48
reconfiguration bits) that are local resources. For the multiple task model the tasks and the
corresponding number of local switches dfg:= LUT1 with [y = 8, T, = LUT2 with

l, =8, T3 = DeMUX with 3 = 8, andT, = MUX with [, = 24.
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Figure 3: Phases with different control tasks on SHyRA: time of hyperreconfigurations state (avail-
able/not available + used/unused) of bits of the LUTs

5 Results

In the first experiment we study a situation where phases with different sets of control
tasks run on the hyperreconfigurable machine. The tasks that run in the different phases
are as follows. Phase I: 4 bit adder using 9 LUTs, Phase II: two 4-bit adders each using
9 LUTs, Phase llI: 8-bit adder using 16 LUTs, Phase IV: 8-bit adder using 16 LUTs +
4-bit counter using 2 LUTs, Phase V: two 4-bit adders each using 4 LUTs. Altogether the
phases comprise of 141 reconfiguration steps.

We first consider only the reconfiguration bits that are used to define the LUTs. This means
that the cost for a hyperreconfiguration is 144 which equals the total number of reconfig-
uration bits for the 18 LUTs. For the determination of the best time steps for hyperrecon-
figuration and the selection of the corresponding hypercontext an optimal algorithm from
[LaMiO44 was used. The results are depicted in Figawrerhe figure shows which bits

of the LUTs are available in the hyperreconfiguration and which are actually used in each
reconfiguration step. Figueeshows the total number of available and used bits for each
reconfiguration step. Note, that between the borders of two phases a hyperreconfiguration
was always done which is due to the different use of the reconfigurable resources. But also
within phases Il and Il several hyperreconfigurations were done. It can be seen clearly
that the number of bits/switches available for reconfiguration differ strongly between the
phases and therefore leads to large saving of reconfiguration times in most phases.

When all reconfiguration bits are considered as hyperreconfigurable then the cost for a
hyperreconfiguration equals the total number of reconfiguration bits for the LUTs and
the multiplexer and demultiplexer. The total number of reconfigurable bits in this case
is 5400. In one reconfiguration step only a few of the reconfiguration bits of the multi-
plexer and demultiplexer are used. This leads to high savings of reconfiguration bits due
to hyperreconfiguration (less than 300 reconfiguration bits have to be specified in every re-
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Figure 4: Phases with different control tasks on SHyRA: absolute number of available and used bits
of the LUTSs (only reconfiguration bits for LUTs are considered)

configuration). But the high costs for hyperreconfiguration lead to a much smaller number
of hyperreconfigurations. Figuieshows the total number of available and used bits for
each reconfiguration step.

The second experiment is designed to show an application scenario where the control
information indicates that one control task should run faster whereas the running times of

the other tasks are of minor importance. In such a case the task selection process might
decide to use alternative versions of the latter which use less LUTs but may need more

computational cycles. In the experiment we measure the change of (hyper)reconfiguration
times during a run of the counter task when different adder tasks run in parallel with it.

Adder
9LUTs 8LUTs 7LUTs 6LUTs 5LUTs 4LUTs
Bits for (hyper-) 2904 9344 8608 7552 7712 6336
reCOnflgUrathnS

Table 2: SHyRA with counter and different adders: total number of used (hyper)reconfiguration bits
during 4 counter cycles

The counter task was run in parallel with each of the different 4-bit adder tasks. Each
run was done over 4 counter cycles and the total number of (hyper)reconfiguration bits
that have to be loaded during this time were measured. The results are shown in Table
2. The table shows that there is a clear tendency that the cost for (hyper)reconfiguration
decreases when the counter use less reconfigurable resources, i.e. LUTs. This means
that the counter tasks runs faster when the adder task is changed. In the experiment the
(hyper)reconfiguration costs with a 4-bit adder is only about 68% of the cost when the



300

250 ]

200 O bits i rcontext not used
O bits in hypercontext used

3>

=3
<
°

[0}

150

100

50

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141
| S L U S — N — S —

Phase | Phase ll Phase 1| Phase IV Phase V

Figure 5: Phases with different control tasks on SHyRA: total number of available and used bits of
the LUTSs (all reconfiguration bits are considered)

8-bit adder runs in parallel. It is interesting that the (hyper)reconfiguration costs with the
9-bit adder are smaller than with the 8-bit and the 7-bit adder. The reason is that ideally the
counter and the adder have to be designed together in order to obtain a minimal number of
the (hyper)reconfiguration costs when run in parallel. This is because the reconfiguration
bit usage of both tasks should fit in order to allow the use fewer and smaller hypercontexts.
Since we cannot claim to have designed the optimal adders to fit with the counter it can
happen that an adder which uses more LUTSs fits better than an adder which uses less LUTs
(e.g. the adders using 9 or 5 LUTSs fit better than those using 8 respectively 4 LUTS).

6 Conclusion

We have shown in this paper that hyperreconfigurable architectures are a promising con-
cept for the implementation of control tasks for processes with varying demands of super-
vision. In particular, the possibility to change the run-time of a task on such architectures
without changing the task itself was investigated. It was shown how the amount of (hy-
per)reconfiguration that is necessary during the execution of a task can be changed by
exchanging other tasks that run in parallel with variants that use less reconfiguration re-
sources so that smaller hypercontexts can be used. An interesting topic for future research
is how to design algorithms so that they fit well when they run in parallel on hyperrecon-
figurable architectures.
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