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Figure 1: left: Path lines (blue to red), streak lines (black) and corresponding surface for particles passing through eyelet in synthetic test
dataset. right: Eyelet path lines and eyelet path surface for two di erent positions (marked by arrows) at wing apex in delta wing dataset. Note
how the path lines emanating from the eyelet centered above the apex (red arrow) at rst lead into the right primary vortex, then into the right

seconday vortex and nally turn to the left seconday vortex.

ABSTRACT

It is achallengingtaskto visualizethe behaior of time-dependent
3D vector elds. Most of the time an overview of unsteadyelds
is provided via animations put, unfortunately animationsprovide
only transientimpressionsof momentary ow. In this paperwe
presentwo approacheso visualizetime varying elds with x ed
geometry Pathlinesandstreaklinesrepresensucha steadyvisu-
alizationof unsteadyector elds, but becausef occlusionandvi-
sualclutterit is uselesso draw themall over the spatialdomain.A
selectionis needed We shav how bundlesof streaklinesandpath
lines, running at differenttimes throughone point in spacelike
throughaneyelet,yield aninsightful visualizationof o w structure
(“eyeletlines”). To provide a moreintuitive andappealingvisual-
izationwe alsoexplain how to constructa surfacefrom thesdines.
As secondapproachyve useasimplemeasuremertf localchanges
of a eld overtime to determineregionswith strongchangesWe
visualizetheseregionswith isosurficesto give anoverview of the
actwvity in the dataset. Finally we usethe regions as a guide for
placingeyelets.
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1 INTRODUCTION

CFD simulationsarea widely usedtool for prototypingin industry
andresearchAs uid dynamicalmechanismsreof very comple
nature,simulationsassumingsteady o w areinsufcient for mary
problems.With increasingspeedand memorysizeof the comput-
ersusedto carry out the numericalcomputationssimulationsof
unsteadyo w have gainedmoreandmoreimportance.Producing
time-dependentector elds covering mary time steps,unsteady
simulationsprovided new challengedor visualization. Thesewere
repliedto with particletracing,which allowed drawing pathlines,
streaklines andtime lines[10] aswell asit enablecthe visualiza-
tion with animatedparticles[6].

Especiallyfor the developmentof aircraft prototypesthe simu-
lations' outputhasreachedextremesizesin recenttimes. Datasets
requiringseveralterabytesof memoryareproducedy CFD simu-
lationsin this area.However, not only the sheersizeof the dataset
in thememoryposesew problemsto be handledby thevisualiza-
tion community alsothe very detailednesandmassof datapoints
requiresnen approachegor visualization. It is well known that
directvisualizationof suchamountsof datamay overstrainthe re-
ceptioncapabilitiesof the humaneye. In 2D and3D steady ow
this problemis addressetby feature-basedndtopologicalvisual-
ization, which reducethe numberof dravn geometricobjectsto a



minimum while keepingthe relevanceof theseobjectsat a maxi-
mum. Both generalapproachefave beensubjectto extensie re-
searchhatyieldedvery satisfyingresultsfor the caseof 2D steady
andunsteadyo w and3D steadyo w. However, thereis agapcon-
sidering3D unsteadyo w. Therehasbeensomeresearctthatwe
will review in section2, but until now thereremainmary openques-
tions. We did not nd ary satisfyingresultson 3D time-dependent
topologyin literatureandthefeature-basethethodshave problems
to visualizethe 4-dimensiona(3D+t) featuresn only threespatial
dimensions.

Displaying4D informationin 3D spaces acentralissuein visu-
alizationof time-dependenb w data. In mostcaseghis problem
is handledby animationeventhoughanimationonly providestran-
sientimpressionslt is not possiblefor the userto getan overview
of all time stepswhile beingableto navigatein this view to geta
betterimpressiorof it. Althoughmary animationsallow theuserto
stopandnavigatein the momentarycon guration, no contet and
no steadyoverview of the dataareavailableto him.

With the work presentedn this paperwe want to take a rst
stepinto the gap of steadyvisualizationof time-dependento w
data.We utilize thewell known technique®f pathlinesandstreak
linescombinedwith anintelligentselectiorandpositioning,i.e. we
tracea numberof particlesrunningthroughthe samepointin space
for differenttimes. The particlesare selectedo passthe point at
equidistantand equally distributed pointsin a giventime intenal.
We referto theentiretyof the obtainedinesaseyeletlinesandcall
the spatialpositioncommonto all theselinesaneyeletbecause¢he
lineslook like threadsunningthroughaneyelet(see gure 1). The
linesandthesurfacewe construcfrom themrepresenthecomplete
areathat canbe reachedvy particlespassinghroughthe eyeletin
the consideredime interval. We shav how the visualizationof the
areaor of singlelineslying in it canhelp understandinghein u-
enceof onelocationon theglobal o w andthein uence of global
o w on asinglelocation. The rst is achiezed by tracingparticles
forwardin time, while tracingthembackwardsyieldsthelatter.

To give an overview of the activity in the ow we proposeto
measurahe variationof the vectorsover time for eachdatapoint.
Visualizingthesevariationswith isosuraceswe provide theusera
steadyoverview, which he canexamineto getinsightin the struc-
ture of thewhole o w overtime. As theeyeletparticletracingun-
folds its potentialsbestin regionswith high actwity, the variation
datais usedto selectinterestingpositionsfor eyelets.

2 RELATED WORK

The visualizationof unsteady elds is a busy eld of research.
As mentionedbeforea centralproblemfor visualizationof time-
varyingdatais the additionaldimensionof time. This is especially
truein the caseof 3D ow. Most researctaddressethis problem
by animation.The rst approache#m thisdirectionwereto animate
groupsof particleq6], for exampleto shav the movementof streak
lines aspresentedy Lane[10]. In orderto provide betterspatial
impressionso w volumeswerepresentedby Becler etal. [2].

Morerecentpublicationsusedenseandtexture-basedechniques
for visualizingtime-dependenb w. The rst approachewerepre-
sentedby de Leeuwet al. [3] who extendedthe useof spotnoise
for ow visualizationto the time-dependentaseandby Shenand
Kao [16] who extendedthe well known LIC for unsteady o ws
(UFLIC). Lagrangian-EuleAdvection[8] andIBFV [20] aresome
of themostrecentadvancedor 2D image-basetechniquesThese
andmary similartechniquesverealsoappliedto three-dimensional
ow [12]. Theseextensionshowever, all have to dealwith prob-
lemsof occlusionandvisualclutter.

Another widely used group of methodsis topological and
feature-basestisualization[13]. For unsteadyo w, feature-based
methodsperformatrackingof featuresover time. Again, in mary

caseghetimeisincorporatedy animation.Alternativesto directly
displayingextractedfeaturesare usedby Reinderset al. [14] and
Garthetal. [5]. Both shav the featuresrespectiely singularities
in a schematicview. While Reinderset al. usetheir graphview
to easehenavigationthroughsingletime stepsandto shawv events
like birth, deathandannihilationof featuresover time, Garthet al.
shav the movementof singularitiesrelative to a given axis. Con-
cerningtime-dependentector eld topology the mostadwanced
approachesve found in literature were proposedby Tricoche et
al. [19] andTheiseletal. [17]. Unfortunatelybothareonly dealing
with 2D time-varying elds.

In the context of our aim to visualize 3D unsteadyo w using
x ed geometryin the spatialdomainof the datasetthe only ap-
proachwe foundis thevortex trackingby Baueretal.[1]. However,
in contrasto our directmethod their approachs feature-based.

Another approachshaving information from all time stepsof
a datasetat oncearethe time histogramspresentedy Kosaraet
al. [9]. With this methodthe changeof distribution of valuesover
timeis showvn by draving histogramsxtendedo a third dimension
(time).

3 LINE-BASED VISUALIZATION OF TIME-DEPENDENT
FIELDS

Using lines as primitivesfor visualizationof vector elds is com-
mon practice. In the following we will shortly review threetypes
of linesfor unsteadyector elds, emphasizeheir differencesand
give their mathematicatle nition to clarify explanationsconcern-
ing the eyeletpathsurfacegivenlaterin this paper(seesec.5.1).

For the following de nitions letv : R®  [tmin;tma]! RS bea
continuougime-dependentector eld. Leta 2 R3 betheposition
of aparticlein spaceandlett 2 [tmin;tmax beacertaintime.

StreamLines Streamlines are integral curves cat(u) of vector
elds which aretangentialto the vectorsof a eld' s domain.
They canbeinterpretedastrajectoriesf particlesin a steady
o w. For time-dependentector elds streamlinesreof little
useasthey stayin a singletime step. Thusthey do not shav
actualparticlemotion but theoreticaltrajectoriesof particles
with in nite velocity.

u ! cat(u)
Ca;t(o) = a
T2 = vica(wi
Tu ajt ,

Here u is a time-independenparametert selectsthe time
from which the vectorsv aretaken andanda is the stream-
line seedatu= 0.

Path Lines In contrastto streamlines, pathlines pa:s in unsteady
o w, indeed arethe pathsof moving particles.Pathlinesare
obtainedby integrationover spaceandtime. For steady o w
pathlinesandstreamlinesareidentical.

t ! pas(t)
Pas(e = a

pas _ :
it (1) = Vv(pas(t):t)

Heresis theseedime.

StreakLines Streaklines syt areimaginarylines connectingthe
locationsof particlesthatwerereleasednto a o w atconsec-
utive time steps. The lines canbe obsened whenlooking at



the particlesat a certaintime t. Like pathlines, streaklines
coincidewith streamlinesin the steadycase.

s | Sat(s) = Pas(t) (1)
Notethatt is x edandsvaries.

For our purposeit is worth recallingthat streamlines, andthus
pathlinesandstreakiines,cannotcrosseachotherin steadywector
elds. Also recallthatthis meansthatonly oneline runsthrough
eachpointandeachpointuniquelyidenti es theline it lieson. This
is why streamlinesyield a good overvien of non-varying vector
elds andareoneof the mostpopularvisualizationtechniquedor
suchdata. Many streamlinesspreadover the whole domainof a
steadyvector eld producea goodimpressionof the o w's struc-
ture. In time-dependentector elds, however, thereis aline run-
ning through eachposition for every point in time, i.e. a single
positionis containedn anin nite numberof lines. Drawing “all”
thesdinesyieldsavisualizationthat suffers extremelyfrom visual
clutterandocclusion.

4 VARIATION FIELD

In this sectionwe introducemeasuregor the changeof a vector
eld overtime. We subsume&he measuresinderthe notionof vari-
ation elds or activity elds andde ne all thesetermsmathemati-
cally.

Let

particulartimesty < ::: < ty at m+ 1 nodesxp;:::;Xm. Let v
be onetime stepandvy;; the vectorat a nodex; in time stepvy.
Let a variation or activity a;(xj) be a measurdor the difference
betweerthe valuesof a nodex; in two consecutie time steps(v,,
Vi, ,). Thenwede ne thevariation eld asa eld thatateverynode
containghevariationsfor thisnodesummedbverall time stepsi.e.

ti=to

Throughoutthis paperwe will use and discussthe following
measures:

Dot Product Variation This variationis computedby accumulat-
ing the positive dot productsof vectorsin consecutie time
steps.Thenormof thetwo vectorsandtheanglebetweerthe
vectorsin uencesthe dot productvariation.

tn 1
aD(XJ) = é. hltiij ; Vli+1?Ji
ti=to
This variation correlatesto the similarity measuresisedby
Ebling et al.[4] for patternmatchingon vector elds.

Vector Variation As secondvariationwe computethe difference
vectorof the two consideredsectorsandtake its norm. The
physicalmotivationfor this variationis thatthis normcanbe
thoughtof asthe “force” neededo turn the rst vectorinto
the shapeof thesecond.

th 1
ti=to

We proposeo interpretvariation elds as“maps”of activity. Us-
ing isosurhicesregionsof high actwvity canbe separatedrom those
with nearlysteady o w. For most o w datasetsegionswith high
actiity areof greatinterestfor analysis.Notethatfor datasetsvith
non-equidistantime stepseachvariationhasto be scaledpropor
tional to thecorrespondinglistance.

5 EYELET LINES

In this sectionwe de ne the notionof eyeletlinesfor thevisualiza-
tion context. We extendthe eyeletlinesto eyeletpath surfacesand
give possibleapplications.

Eyeletlines,in our notion,area bundleof linesdescribingo w
orvector eld propertiesn generabndrunningthroughatleastone
commonposition(basepoint, eyele) atdifferenttimes. Thiscanbe
formulatedmathematicallyasfollows: Let “x:¢, de ned as

‘wt:R 1 RS
t I ‘x;t(t);

be a curve running through a basepoint x 2 R® at time t 2
[tminitmax R, wheretnyin is smallestand tyay the largesttime
valuein consideration.Thenwe call the totality of lines " x.: with
t 2 [tmin;tmax eyeletlinesLy.

As mentionedn section3, for pathlinesandstreakinesin time-
varyingvector elds onepointin spacecanbecrossedy different
lines. Thusbothline typesaresuitableasbasisfor eyeletlinesand
we can specializethe abose de nition for them asfollows. The
de nitions are straightforward: Eyeletpathlines are eyeletlines
obtainedby pathline integration,i.e.

Fixt 2 Ly xt = Pxt9;

andeyelet streaklines are all streaklines runningthrougha base
point,i.e.
fixt 2 Luj st = St 9
To easdurtherexplanationsa particlepassinghebasepointwill
be referredto aspassingparticle in the following. Also notethat
eyeletpathlines,all throughouthis paper arecoloredfrom blueto
redwith increasingime of the particlepassinghe eyelet.

5.1 EyeletPath Surface

Regardingthe setof all possiblepositionsof passingparticlesasa
continuumleadsto thenotionof eyeletpathsurfaces Everypatrticle
runningthroughthebasepointx canonly move onthis surfaceand,
viceversagvery pointof thesurfaceis thepositionof aparticlethat
runsthroughx atacertaintime.

All points on path lines and streaklines describepositionsof
passingparticles.For pathlinesthesearethe positionsof onepar
ticle overtime, for streaklinesthe pointsdescribethe positionsof
mary particlesat a single point in time. With the agumentation
of the previous paragraphthus, all pathlines andall streaklines
runningthroughthe basepoint lie in the eyelet pathsurfacefor x.
Indeedboth, eyelet pathlines and eyelet streaklines, build up the
wholesurface.

Mathematicallythis canbe seenasfollows. The eyeletpathsur
faceP, througha canbede ned by pathlinesas

P;ah = £x2 R%x 2 past); St 2 [tmin;tmadg
andby streaklinesas
P;treak: fx2 joX 2 531(9); St 2 [tminitmaxg

With sat(s) = pas(t) from eq. 1 andtaking into accountthat s

andt for PS"2k and PP*" arerunningthroughall time valuesin
[tmin; tmax, it follows
P, = PPAN = patreak.

This is the coincidenceof pathlines andstreaklinesin the eyelet
pathsurface. Theleft imageof gure 1 illustratesthe coincidence



Figure 2: Inserting a new line in case of diverging behaviar and
ignoring an existing line for converging case.

of thesepathlinesandstreaklineswith the eyeletpathsurfacein a
syntheticvector eld.

As mentionedtheeyeletpathsurfacerepresentall possiblepo-
sitionsof all passingparticles.Thus,performingthetracingof par
ticlesonly in o w direction, the surfacecoversall partsof space
reachabldy o w throughthe basepoint. Taking only the partsof
pathlines in accountthat are locatedupstreamto the basepoint,
the eyeletpathsurfacerepresentsheregion whereall o w passing
the eyeletis originatedfrom. Applicationsof theseinterpretations
of the surfaceare discussedn section6.4. Eyeletpath surfaces
canalsobe seenaspathsurfacesthathave a streakline asstarting
curve. Wideningup the eyeletto aline or a smallareawould lead
to athreedimensionatounterparbf eyeletpathsurfacessimilarto
a ow volume[2].

5.2 SurfaceConstruction

In our implementatiorthe surfaceis constructedusingthe eyelet
pathlines. We move alongtwo neighboringinesandsamplethem
regularly after a constantstepsize. We connectthesepointsto tri-
anglesasshavn for linesc andd in theleft imagesof gure 2. Two
consecutie pointson bothlinesform a quadthatis built up of two
triangles. The diagonaledgeconnectghe pair of oppositepoints
thathasthe smallerdistance.

Neighboringlines startat very closepointsin time (e.qg. tc, tq)
andasthe changeof vectorsalongthe time axisis continuoushe
shapeof neighboringlines,in mary cases|ooksvery similar. The
continuityin time resultsfrom thelinearinterpolationin time that
is performedto obtainvectorsbetweerthe time stepsprovided by
theconsideredlatasetAs differing shapemayimply “shift” in arc
length and increasingdistancebetweenneighboringlines, this is
crucialfor the quality of the aforementionedvay of generatingri-
angles.However, for stronglychangingvector elds slow varying
shapeis not alwaysgiven. Diverging behaior of thelinesis one
casewherethe distancebetweerthelineschangesin this casewe
inserta new line betweerthe diverging lines. We do thisin away
very similar to the approachof Hultquist[7]. Figure 2 illustrates
the ideain the left image. The distancebetweencorresponding
points on neighboringlines a and ¢ is controlledby a threshold.
If the distanceexceedsthe thresholda new line (b) hasto bein-
serted. Unfortunately we cannot just starta new pathline in the
middle betweerthe two consideregoints(like Hultquistdoes),as
this new pathlines, dueto numericalerrors,would not necessarily
run throughthe eyelet point x. Note alsothat not only the spatial
position,but alsothe positionin time would have to be determined
for the new startpoint. We foundthatthis is not a trivial task. So,
having not the sameoptionasHultquist, we startthe new pathline
(b) atthebasepositionx for t, = 0:5(t5 + tc). We areawarethatthis
proceduremeanamuchextra computatiortime, however, we think
it is well spentin orderto ensureaccurag.

The new pathline is not usedfor triangulationfrom the base

Figure 3: Reuseof previously computed line for diverging behaviar
after convergence.

Figure 4: Split of eyelet path surface originating from eyelet above
wing apex due to large angle between line segments.

pointon becausehiswould requireto restartthetriangulationfrom
the beginning, what, obviously would be a tremendousvaste of
computatiortime. Instead we take asmary stepson the new path
line aswe took on a andc until the distanceexceededhe thresh-
old. Thereachedositionis thenthe rst of line b usedfor surface
construction. From thereon linesa andb, andlinesb andc are
theneighborindinesconsideredor triangulation.For the contrary
caseof converging lines (see gure 2, right) we simply omit the
positionsonthepathline in themiddleandregarde andg asneigh-
bors.

Figure3 shaws pathlinesthatat rst drawv nearerto eachother
anddivergeafterwards.Thedivergencehereis handledasa special
case We do notalwayscomputea new pathline but checkwhether
we have previously computedinesin the time interval associated
to thetwo diverging lines. If thereis only onesuchline we useit to
compensatéhedivergence.ln thecaseof morethanonepreviously
computedine, likelines2 and3in gure 3, we chosetheline with
startingtime next to themiddle of the startingtimesof line 1 and2.
We do not detectsequencesf corvergenceanddivergence put, in
fact,checkfor alreadycomputedinesfor every divergence.

Very rapid divergenceof neighboringlinesis detectecandhan-
dled as proposedby Hultquist [7]. This meanswe computethe
anglebetweenwo consideregathline segmentsand,if large an-
glesshaw up, stoptriangulationbetweerthesepathlines. We thus
splitthefront of thesurfaceinto two separatg@arts.An examplefor
sucha strongdivergencecanbe obsened for the eyelet pathlines
shavnin gure 4. Thesurfaceis split up into threepartshere.

5.3 EyeletPosition Selection

Theusefulnessf theeyeletlinescrucially depend®n the position
of theeyelet,i.e. onthepositionsharedy all computedpathlines.
As pathlines througha point only changewhenthe ow at and
aroundthis pointchange®ver time, the eyeletpathlinesfor steady
o w collapseo oneline. Intendingvisualizationof time-dependent



elds we do not considersteadybut unsteadyo w here,but also
for unsteadyo w wide regions of nearly unchangingvelocity are
possible.The only conclusionthatcanbe dravn from the collapse
to oneline is theexistenceof a (nearly)steadyeld, in generahnot
very interestingresult. Hencethe positionof the eyeletshouldbe
choserto lie in regionsa priori known to beinterestingor at least
in regionswherethe eld is unsteady

We found the regions and positionslisted in the following to
yield insightful eyeletpathlines.

Edgesand Corners of Flow-PassedObjects Near to edgesand
cornersof objects, o w often splits or changests behaior.
Hence,interestingeyeletpositioncanbefoundthere. There-
gion aroundthe apex of the deltawing (seesec.6 and gs. 1
and4) is agoodexamplefor this.

Vortex Cores Positionsin vortex coresyield eyeletpathlinesthat
canhelpunderstandinghe feedingprocessor avortex. The
surfaceconstructedrom thebackwardsintegratedeyeletlines
describesheregionwheretheparticlesin thecorecomefrom.

Singularities Eyeletpathsurfacesstartingnearsingularitiesyield
insightin their becomingandevolution.

RegionBehind Flow PassedObject Turbulence and swirling
motion often appearbehindobjectsimmersedn a ow. The
sourcesof thesebehaiors can be studied by positioning
eyeletsthere.

Active Regions In generalfollowing theagumentatiorat the be-
ginning of this subsectionregionswith high actiity sene as
interestingeyelet positions. The variation elds presentedn
sectiond canbeemployedto nd suchregions.

Which positionsto choose,in general,dependson the task.
However, in mary casesthe positionsof someof the mentioned
locationscoincide. Thedeltawing datasetliscussedateris anex-
treme examplefor this, sincetherethe locationsof singularities,
high activity andthevortex coresof the mainvorticescoincide.

As eyeletlinesareusedfor studyingthein uence of oneposition
in spacejn mostcaseonewill draw only thelinesor the surface
for oneeyelet. For presentationhowever, it may be interestingto
showv the in uence of a numberof eyelets. We found that using
differentcolor rangedor differenteyeletsandtransparensurfaces,
it is possibleto createan understandablgisualizationfor around
six eyelets.But notethatthis numberstronglydependsn the posi-
tions of the eyeletsandon the consideredlatabecaus@f possible
occlusion.

6 RESULTS, APPLICATIONS AND DIScussIiON

Wetestedour methodausingrealandsyntheticdatasetsln this sec-
tion we describaherealdatasetandpresentheresultsof applying
our methodgo them.

6.1 Datasets
6.1.1 DeltaWing

We studieda CFD simulatiort of air ow arounda sharp-edged
deltawing at subsonicspeedMach0.2). Theinitially alreadyhigh
angleof attackincreasesver time, resultingin the creationof vor-
tex bubbles,i.e. in the breakdevn of the main vortices. The sim-
ulation shaws the evolution of the primary, secondanandtertiary
vortex structureover time andthe breakdaevn of the mainvortices

1This simulationdatasehasalreadysenedassubjectof studyfor other
authors.Seefor example[5, 18]

Figure 5: upper row: Top view of isosurfaceof pressurefor rst and
last time step of hurricane Isabel showing its movement throughout
the simulation. lower row: Isosurfacesin vector variation eld and
dot product variation eld shawing the trace of the hurricanescenter.

Figure 6: Eyelet path lines integrated backwards from eyelet near
land fall of Isabel (North Carolina) and transparent isosurfaceof dot
product variation eld.



above thewing. For ourtestswe picked out every tenthof the 1000
time steps.Thegrid is constanover time, it consistsof roughly 3
million verticesand11.1million unstructureaells. Altogether the
datasehasasizeof 6.3 GB.

6.1.2 Hurricanelsabel

As secondrealistic example,we testedour methodson datapro-
ducedby a simulationof hurricanelsabef from the U.S. National
Centerfor AtmospheridResearchThedatasewasprovidedin con-
text of the IEEE Visualization2004 contest. It consistsof several
time-varyingscalarandvectorvariablesona500 500 100recti-
lineargrid for 48 time steps.Betweenconsecutie time stepsthere
is atime spanof onehour For our testswe useda spatially sub-
sampledversionof the dataset. The graphicaloutputis scaledin
z-direction(vertical) for amoreappealingvisualization.

6.2 DataHandling and Performance

All computationavere carriedout on a standard®C with a 64-bit
OpteronCPU runningat 2 GHz. The virtual main memoryof the
machineconsistef 3 GB RAM and22 GB swap space.Having
the 64-bit CPUI it is possiblefor usto addressnorethan4 GB of
mainmemoryandthusto loaddatasetsip to 24 GB within asingle
process.

For computingthe variation elds every positionof thedatahas
to beprocessetbr eachtime step.Thus,nostratey for pre-loading
time stepss neededVectorvariationanddot productvariationboth
take aboutsix minutesfor thewholedeltawing datasetThis scales
linearly with the sizefor otherdata.

It would bedesirableo have real-timeinteractvity for thecom-
putationof eyeletlines andeyeletpathsurfaces.However, at least
for large datasetghis is not possibledueto several reasons.The

rst reasons thatintegrationonirregulargridsusinga RungeKutta
schemes not computationallycheap. Secondlythe computation
time depend®on the numberof computedstreamlinesandthuson
the resolutionof the surface. Finally, the factthattime-dependent
datadoesnot t intotheRAM slowsthecomputatiordonn because
the datahasto be loadedfrom disk. Many approache$or visual-
izationof time-varying elds usespecialdatastructuregor acceler
atingcomputationsThisis notpossiblein our case As eyeletpath
linescanrunthroughary pointin time andspacewe cannotdeter
mineary of theneededlatain adwvanceto pre-loadit. However, as
we hold the completedatasetn thevirtual mainmemorythe cache
of the operatingsystemcanyield performanceainswhencomput-
ing pathlinesthatdo not differ much. This helpswhencomputing
only few lineswith smallnumericalprecisionfor fasttestsandaf-
terwardscomputinga betterresohed eyeletpathsurface. Thecells
for the rst computationwill be keptin the cacheandaccelerate
the secondntegration.As our datastructurg[11] is organizedwith
arraysandasgrid cells of CFD dataoften are organizedin a way
that neighboringcells are storedcloseto eachother not only the
cells of previous computationsdut alsotheir neighboringcells are
cached.Our datastructurealsosupportsfast point locationwhich
is very importantfor integral curve computatioron irregulargrids.
While thecomputationdor surfacedikein gure 4, wherewe have
over7 million eld lookupsfor theRungeKuttaschemetake about
two minutes,computingsurfacesfor nearbyeyeletsthereaftertake
lessthan20 seconds.

6.3 Variation Field

Fourisosurbcesfor differentisovaluesin the vectorvariation eld
of thedeltawing areshavnin gure 7. The rst surfacearoundthe
wholewing revealsno specialfeatureslt only shavs thatthe most

2http://www.vets.ucar.edu/vg/isabeldata/

c d

Figure 7: Isosurfacesin the vector variation eld of the delta wing
dataset. Isovalues (a-d): 2(10% of all values), 10, 50(90%) and
200(98%)

activity canbe found aroundthe wing, which is cleara priori. In

thenext two imageghecenterof themainvorticesemege stepby

step.For thelastimagetheisosurficesdo not cover thewholevor-

ticesarymore, but form aroundtheir breakdavn bubbles. Hence,
the mostinterestingfeaturedfor this datasetareexactly wherethe
mostactivity canbefound. Thevolumeenclosedy theisosurfices
for large valuesarethusvery interestingocationsto placeeyelets.
As mentionedbefore,in factthreecriteriafor interestinglocations
coincidethere: large actwity, vortex coreline (early time steps)
andstagnatiorpointcorrespondingdo vortex breakdavn (latetimes
steps) Eyeletpathlinesstartedtherecanbeseenin gure 8.

Isosuriicesn thevariation elds of the hurricanelsabeldataare
shown in thelowerimagesof gure 5. Theredisosuraceindicates
a region of high valuesin the dot productvariation eld andthe
blue isosurfice encloseshigh valuesof the vectorvariation eld.
Both surfacesshaw the pathof Isabels center As evidencefor this
interpretationjn the uppertwo imagesisosuracesof the pressure
for the rst andthelasttime steparegivenshaving the movement
of thecenter

Automation  Wetriedto automatehe procesf isolvaluese-
lection but discoveredthat this is not possibleoffhand. Sincewe
had good experiencefrom the deltawing (see g. 7) we tried to
chooseheisovaluessuchthatthey dividedthedatasetat 10%,90%
and98% of the numberof values.This, unfortunatelyyieldedun-
satisfyingresultsfor someotherdatasetsEvenchoosingsovalues
in the mentionedway for a single datasetout for differentvaria-
tions not always yielded useful results. However, large isovalues
area goodselectionfor mostdatasets. The hurricanedataseis a
good examplefor this becausehe two isosurficesin gure 5 are
at 94% and 98% of the numberof values. As automationis not
possiblegxplorationof variation elds hasto beinteractie andthe
userhasto choosethe isovalues. This is no disadwantage since,
asmentionedbefore,the rangeof usually usefulvaluesis limited
and,in addition,fastisosurficeextractioncanbeachiezedby using
acceleratiordatastructureg15]. Computingthevariation eld and
settingup the acceleratiorstructurecan be doneautomaticallyin
onestepin post-processingf the simulation.



6.4 EyeletPath Lines

Thedeltawing appearedo beaninterestingexamplein our studies
of eyeletpathlines. Thevorticesdominatethis ow eld. Thusthe
rst questionghatarosewere: Which particlesenterwhich vortex
and are there positionsfrom where particlespassingat different
timesenterdifferentvortices.In gure 1 eyeletpathlinesrunning
into differentvorticesare dravn. While all particlespassingthe
left eyeletrun into the left primary vortex, the tracesof particles
passinghe basepoint centralabove the apex leadinto vorticeson
bothsides.Thelinesturnfrom theright primaryvortex to theright
secondaryortex and nally runinto theleft secondarywortex. A
very similar situation,usedto depictthe splitting of the surface,is
shavnin gure 4. However, noticethatfor theeyeletin gure 4 the
linesleadinto thevorticesin reverseorder Thebasepointsof these
similar casesarevery closeto eachotherbut the particlesrunning

throughthem,neverthelesstake very differentdirections.

In contrastto the vorticesof the deltawing, the vortical struc-
turein the hurricanedatasetmoves. Thus,we could not selectan
eyelet“in” thevortex. However we foundaneven moreinteresting
selectionnamelythelocationof Isabels landfall. Thelinesgener
atedby integratingagainstthe o w directionareshavnin gure 6.
They representhe pathsof particlesapproachindo theeyelet,i.e.
thewindsdirectedto its position. The lengthsof the particleswith
largetime valuescorrespondo thevelocity of the particlesbecause
fasterparticlescover a larger distancein the sametime. Linesfor
very smallstarttime values(bluelines)areshortbecausehe back-
ward integrationreacheghe rst time step,wherethe integration
hasto end,very fast. Not consideringhese the lengthof the other
lines (violet to red) shav the evolution of the hurricane:The wind
hashigh velocitiesfor the approachinghurricanebut slows dovn
immediatelywhenits eye reacheghe eyelet. Not only thelengths,
but alsothe directionsof the linesrevealthe advance. At rst the
wind comesirom theoceanijt developsaturn aslsabelapproaches
nearerand, nally , whenthe eye of the hurricanereacheghe base
pointof thelines, it attractsair from inland.

In therestof this sectionwe give possibleapplicationdor eyelet
linesthataim at particularphysicalproblems.

6.4.1 Origin of particlesin Vortex Bubble

Eyelet path lines startedinside a vortex bubble, can aid analysis
of vortex breakdevn. Integrating eyelet lines backwardsin time

from a positionknown to lie in abreakdaevn bubblefor sometime

steps,shaws the origin of the materialin ating the bubble. For

our experimentswe startedthe lines at the position of one of the

stagnatiorpointsin time step750( g. 8). Thesestagnatiorpoints

areknown to play a centralrole for thecreationof therecirculation
bubble. We computedlines for two differenttime intervals. For

theright imagethe interval containedall time stepsof the dataset,
while thelinesin theleft imagecorrespondo aninterval containing
only time stepswith a pronouncedubble. Theleft imagesshawvs,

in agreemenwvith known facts,thatthevortex bubblesarefedonly

from very small regions aroundthe centerof the vortices. Blue

lines in the right image shav how particlesrunning throughthe

basepoints beforethe appearancef the bubblescomealsofrom

regionsof thevorticesapartfrom their centers.

6.4.2 Comhustion

The gas and air ow in comlustion chamberds often studiedto
achieve high effectivenessof the reactionprocess.An appropriate
mixture of gasandair is neededor a properreaction. The worst
conditionsfor the comhustionarewhereonly air or only gasisin a
regionasnoreactionwill take placethere.

Eyeletlinesandtheir correspondingurfacecanprovide a useful
tool for analyzingthe o w in suchregions. Given a region under

suspectto containno air or no gas, one can selectpointsin this
region andcomputetheir eyeletlinesbackwardsin time. Thelines
thenprovide anoverview of the origins of all particlespassinghe
selectedpoint. If thelinesonly reachtheinlet for air respectrely
only theinlet for gasthis shavsthat,indeed noair respectiely gas
will everreachthepoint.

7 CONCLUSION AND OUTLOOK

In this paperwe have presentedwo methoddor visualizingthree
dimensionaltime-dependentector elds using steadygraphical
representation,e withouttheuseof animation.Onemethodshavs
thetemporalevolution of pathlinesor streaklinesemanatingrom
acertainspatiallocationcalledeyelet. We connectedhesedinesto
a surfaceto displaythe whole areabelongingto the o w through
the eyelet. The secondnethodproposedn the paper computesan
“activity map” for the databy measuringocal change®f vectors.
Isosuriicesin themapshaw regionsof high activity andwereused
to give anoverview of theactity in the eld. Differentmeasures
were discussed.Both methodswere combinedby taking regions
of large variationas rst guessfor interestingpositionsof eyelets.
Appliedtolarge o w datasetsindinterestingohysicalproblemsour
methodsprovedtheir usefulness.

As futurework it maybeinterestingo performthe o w localiza-
tion proposedy Wiebeletal. [21] for eachtime stepandapplythe
techniquepresentedhroughouthis papero the obtained elds.

For thevariation eld computationwe planto exploremoresim-
ilarity measuresindtesttheir usefulnesgor describingthe global
structureof time-dependenvector elds. We also plan to study
possibilitiesfor applyingour methodsto datasetsvith moving ge-
ometryor maving frameof reference.
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