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Figure 1: left: Path lines (blue to red), streak lines (black) and corresponding surface for particles passing through eyelet in synthetic test
dataset. right: Eyelet path lines and eyelet path surface for two di�erent positions (marked by arrows) at wing apex in delta wing dataset. Note
how the path lines emanating from the eyelet centered above the apex (red arrow) at �rst lead into the right primary vortex, then into the right
secondary vortex and �nally turn to the left secondary vortex.

ABSTRACT

It is a challengingtaskto visualizethebehavior of time-dependent
3D vector�elds. Most of the time an overview of unsteady�elds
is providedvia animations,but, unfortunately, animationsprovide
only transientimpressionsof momentary�o w. In this paperwe
presenttwo approachesto visualizetime varying �elds with �x ed
geometry. Path linesandstreaklinesrepresentsucha steadyvisu-
alizationof unsteadyvector�elds, but becauseof occlusionandvi-
sualclutterit is uselessto draw themall over thespatialdomain.A
selectionis needed.We show how bundlesof streaklinesandpath
lines, running at different times throughone point in space,like
throughaneyelet,yield aninsightfulvisualizationof �o w structure
(“eyelet lines”). To provide a moreintuitive andappealingvisual-
izationwealsoexplainhow to constructasurfacefrom theselines.
As secondapproach,weuseasimplemeasurementof localchanges
of a �eld over time to determineregionswith strongchanges.We
visualizetheseregionswith isosurfacesto give anoverview of the
activity in the dataset.Finally we usethe regionsasa guide for
placingeyelets.
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1 I NTRODUCTI ON

CFD simulationsarea widely usedtool for prototypingin industry
andresearch.As �uid dynamicalmechanismsareof very complex
nature,simulationsassumingsteady�o w areinsuf�cient for many
problems.With increasingspeedandmemorysizeof thecomput-
ers usedto carry out the numericalcomputations,simulationsof
unsteady�o w have gainedmoreandmoreimportance.Producing
time-dependentvector �elds covering many time steps,unsteady
simulationsprovidednew challengesfor visualization.Thesewere
repliedto with particletracing,which alloweddrawing pathlines,
streaklinesandtime lines [10] aswell asit enabledthevisualiza-
tion with animatedparticles[6].

Especiallyfor thedevelopmentof aircraftprototypes,thesimu-
lations' outputhasreachedextremesizesin recenttimes.Datasets
requiringseveralterabytesof memoryareproducedby CFD simu-
lationsin this area.However, not only thesheersizeof thedataset
in thememoryposesnew problemsto behandledby thevisualiza-
tion community, alsothevery detailednessandmassof datapoints
requiresnew approachesfor visualization. It is well known that
directvisualizationof suchamountsof datamayoverstrainthere-
ceptioncapabilitiesof the humaneye. In 2D and3D steady�o w
this problemis addressedby feature-basedandtopologicalvisual-
ization,which reducethenumberof drawn geometricobjectsto a



minimum while keepingthe relevanceof theseobjectsat a maxi-
mum. Both generalapproacheshave beensubjectto extensive re-
searchthatyieldedverysatisfyingresultsfor thecasesof 2D steady
andunsteady�o w and3D steady�o w. However, thereis agapcon-
sidering3D unsteady�o w. Therehasbeensomeresearchthatwe
will review in section2,butuntil now thereremainmany openques-
tions. We did not �nd any satisfyingresultson 3D time-dependent
topologyin literatureandthefeature-basedmethodshaveproblems
to visualizethe4-dimensional(3D+t) featuresin only threespatial
dimensions.

Displaying4D informationin 3D spaceis acentralissuein visu-
alizationof time-dependent�o w data. In mostcasesthis problem
is handledby animationeventhoughanimationonly providestran-
sientimpressions.It is not possiblefor theuserto getanoverview
of all time stepswhile beingableto navigatein this view to get a
betterimpressionof it. Althoughmany animationsallow theuserto
stopandnavigatein the momentarycon�guration, no context and
nosteadyoverview of thedataareavailableto him.

With the work presentedin this paperwe want to take a �rst
step into the gap of steadyvisualizationof time-dependent�o w
data.We utilize thewell known techniquesof pathlinesandstreak
linescombinedwith anintelligentselectionandpositioning,i.e. we
traceanumberof particlesrunningthroughthesamepoint in space
for different times. The particlesareselectedto passthe point at
equidistantandequallydistributedpointsin a given time interval.
Wereferto theentiretyof theobtainedlinesaseyeletlinesandcall
thespatialpositioncommonto all theselinesaneyeletbecausethe
lineslook like threadsrunningthroughaneyelet(see�gure 1). The
linesandthesurfaceweconstructfrom themrepresentthecomplete
areathatcanbereachedby particlespassingthroughtheeyelet in
theconsideredtime interval. We show how thevisualizationof the
areaor of singlelines lying in it canhelpunderstandingthe in�u-
enceof onelocationon theglobal �o w andthein�uence of global
�o w on a singlelocation. The�rst is achievedby tracingparticles
forwardin time,while tracingthembackwardsyieldsthelatter.

To give an overview of the activity in the �o w we proposeto
measurethevariationof thevectorsover time for eachdatapoint.
Visualizingthesevariationswith isosurfaceswe provide theusera
steadyoverview, which hecanexamineto get insight in thestruc-
tureof thewhole�o w over time. As theeyeletparticletracingun-
folds its potentialsbestin regionswith high activity, the variation
datais usedto selectinterestingpositionsfor eyelets.

2 REL ATED WORK

The visualizationof unsteady�elds is a busy �eld of research.
As mentionedbeforea centralproblemfor visualizationof time-
varyingdatais theadditionaldimensionof time. This is especially
true in thecaseof 3D �o w. Most researchaddressesthis problem
by animation.The�rst approachesin thisdirectionwereto animate
groupsof particles[6], for exampleto show themovementof streak
lines aspresentedby Lane[10]. In orderto provide betterspatial
impressions�o w volumeswerepresentedby Beckeretal. [2].

Morerecentpublicationsusedenseandtexture-basedtechniques
for visualizingtime-dependent�o w. The�rst approacheswerepre-
sentedby de Leeuwet al. [3] who extendedthe useof spotnoise
for �o w visualizationto the time-dependentcaseandby Shenand
Kao [16] who extendedthe well known LIC for unsteady�o ws
(UFLIC). Lagrangian-EulerAdvection[8] andIBFV [20] aresome
of themostrecentadvancesfor 2D image-basedtechniques.These
andmany similartechniqueswerealsoappliedto three-dimensional
�o w [12]. Theseextensions,however, all have to dealwith prob-
lemsof occlusionandvisualclutter.

Another widely used group of methods is topological and
feature-basedvisualization[13]. For unsteady�o w, feature-based
methodsperforma trackingof featuresover time. Again, in many

casesthetimeis incorporatedby animation.Alternativesto directly
displayingextractedfeaturesareusedby Reinderset al. [14] and
Garthet al. [5]. Both show the featuresrespectively singularities
in a schematicview. While Reinderset al. usetheir graphview
to easethenavigationthroughsingletimestepsandto show events
like birth, deathandannihilationof featuresover time,Garthet al.
show the movementof singularitiesrelative to a given axis. Con-
cerning time-dependentvector �eld topology the most advanced
approacheswe found in literaturewere proposedby Tricocheet
al. [19] andTheiseletal. [17]. Unfortunatelybothareonly dealing
with 2D time-varying�elds.

In the context of our aim to visualize3D unsteady�o w using
�x ed geometryin the spatialdomainof the dataset,the only ap-
proachwefoundis thevortex trackingby Baueretal. [1]. However,
in contrastto ourdirectmethod,their approachis feature-based.

Another approachshowing information from all time stepsof
a datasetat onceare the time histogramspresentedby Kosaraet
al. [9]. With this methodthechangeof distribution of valuesover
timeis shown by drawing histogramsextendedto athird dimension
(time).

3 L I NE-BASED V I SUAL I ZATI ON OF T I M E-DEPENDENT
FI EL DS

Using lines asprimitivesfor visualizationof vector�elds is com-
mon practice. In the following we will shortly review threetypes
of linesfor unsteadyvector�elds, emphasizetheir differencesand
give their mathematicalde�nition to clarify explanationsconcern-
ing theeyeletpathsurfacegivenlaterin thispaper(seesec.5.1).

For the following de�nitions let v : R3 � [tmin; tmax] ! R3 be a
continuoustime-dependentvector�eld. Let a 2 R3 betheposition
of aparticlein spaceandlet t 2 [tmin; tmax] beacertaintime.

StreamLines Streamlines are integral curves ca;t (u) of vector
�elds which aretangentialto thevectorsof a �eld' s domain.
They canbeinterpretedastrajectoriesof particlesin a steady
�o w. For time-dependentvector�elds streamlinesareof little
useasthey stayin a singletime step.Thusthey do not show
actualparticlemotion but theoreticaltrajectoriesof particles
with in�nite velocity.

u ! ca;t (u)
ca;t (0) = a

¶ca;t

¶u
(u) = v(ca;t (u);t)

Here u is a time-independentparameter, t selectsthe time
from which the vectorsv aretaken andanda is the stream-
line seedatu = 0.

Path Lines In contrastto streamlines,pathlinespa;s in unsteady
�o w, indeed,arethepathsof moving particles.Pathlinesare
obtainedby integrationover spaceandtime. For steady�o w
pathlinesandstreamlinesareidentical.

t ! pa;s(t)
pa;s(s) = a

¶pa;s

¶t
(t) = v(pa;s(t);t)

Heres is theseedtime.

StreakLines Streaklines sa;t areimaginarylines connectingthe
locationsof particlesthatwerereleasedinto a �o w atconsec-
utive time steps.The linescanbeobservedwhenlooking at



the particlesat a certaintime t. Like pathlines, streaklines
coincidewith streamlinesin thesteadycase.

s ! sa;t (s) = pa;s(t) (1)

Notethatt is �x edandsvaries.

For our purposeit is worth recallingthatstreamlines,andthus
pathlinesandstreaklines,cannotcrosseachotherin steadyvector
�elds. Also recall that this meansthat only oneline runsthrough
eachpointandeachpointuniquelyidenti�es theline it lieson. This
is why streamlinesyield a good overview of non-varying vector
�elds andareoneof themostpopularvisualizationtechniquesfor
suchdata. Many streamlinesspreadover the whole domainof a
steadyvector�eld producea goodimpressionof the �o w's struc-
ture. In time-dependentvector�elds, however, thereis a line run-
ning througheachposition for every point in time, i.e. a single
positionis containedin an in�nite numberof lines. Drawing “all”
theselinesyieldsa visualizationthatsuffersextremelyfrom visual
clutterandocclusion.

4 VARI ATI ON FI EL D

In this sectionwe introducemeasuresfor the changeof a vector
�eld over time. Wesubsumethemeasuresunderthenotionof vari-
ation �elds or activity �elds andde�ne all thesetermsmathemati-
cally.

Let
v : f x0; : : : ;xmg� f t0; : : : ; tng ! R3

beadiscrete3D time-dependentvector�eld thatis de�nedfor n+ 1
particular times t0 < : : : < tn at m+ 1 nodesx0; : : : ;xm. Let vti
be onetime stepandvti ; j the vectorat a nodex j in time stepvti .
Let a variation or activity ati (x j ) be a measurefor the difference
betweenthevaluesof a nodex j in two consecutive time steps(vti ,
vti+ 1). Thenwede�ne thevariation�eld asa�eld thatateverynode
containsthevariationsfor thisnodesummedoverall timesteps,i.e.

a(x j ) =
tn� 1

å
ti= t0

ati (x j ) for j = 1; : : : ;m:

Throughoutthis paperwe will use and discussthe following
measures:

Dot Product Variation This variationis computedby accumulat-
ing the positive dot productsof vectorsin consecutive time
steps.Thenormof thetwo vectorsandtheanglebetweenthe
vectorsin�uencesthedotproductvariation.

aD(x j ) =
tn� 1

å
ti= t0

�
�hvti ; j ; vti+ 1; j i

�
� j = 1; : : : ;m

This variation correlatesto the similarity measuresusedby
Eblinget al. [4] for patternmatchingonvector�elds.

Vector Variation As secondvariationwe computethe difference
vectorof the two consideredvectorsandtake its norm. The
physicalmotivationfor this variationis that this normcanbe
thoughtof asthe “force” neededto turn the �rst vector into
theshapeof thesecond.

aV (x j ) =
tn� 1

å
ti= t0

kvti ; j � vti+ 1; jk j = 1; : : : ;m

Weproposeto interpretvariation�elds as“maps”of activity. Us-
ing isosurfacesregionsof highactivity canbeseparatedfrom those
with nearlysteady�o w. For most�o w datasetsregionswith high
activity areof greatinterestfor analysis.Notethatfor datasetswith
non-equidistanttime stepseachvariationhasto be scaledpropor-
tional to thecorrespondingdistance.

5 EYEL ET L I NES

In thissectionwede�ne thenotionof eyeletlinesfor thevisualiza-
tion context. We extendtheeyelet linesto eyeletpathsurfacesand
givepossibleapplications.

Eyeletlines,in our notion,area bundleof linesdescribing�o w
or vector�eld propertiesin generalandrunningthroughat leastone
commonposition(basepoint,eyelet) atdifferenttimes.Thiscanbe
formulatedmathematicallyasfollows: Let `x;t , de�ned as

`x;t : R ! R3

t ! `x;t (t);

be a curve running through a basepoint x 2 R3 at time t 2
[tmin; tmax] � R, wheretmin is smallestand tmax the largest time
valuein consideration.Thenwe call the totality of lines `x;t with
t 2 [tmin; tmax] eyeletlinesLx.

As mentionedin section3, for pathlinesandstreaklinesin time-
varyingvector�elds onepoint in spacecanbecrossedby different
lines. Thusbothline typesaresuitableasbasisfor eyelet linesand
we can specializethe above de�nition for them as follows. The
de�nitions arestraightforward: Eyeletpath lines areeyelet lines
obtainedby pathline integration,i.e.

f `x;t 2 Lxj`x;t = px;t g ;

andeyelet streaklines areall streaklines runningthrougha base
point, i.e.

f `x;t 2 Lxj`x;t = sx;t g :

To easefurtherexplanationsaparticlepassingthebasepointwill
be referredto aspassingparticle in the following. Also notethat
eyeletpathlines,all throughoutthispaper, arecoloredfrom blueto
redwith increasingtimeof theparticlepassingtheeyelet.

5.1 EyeletPath Surface

Regardingthesetof all possiblepositionsof passingparticlesasa
continuumleadsto thenotionof eyeletpathsurfaces. Everyparticle
runningthroughthebasepointx canonly moveonthissurfaceand,
viceversa,everypointof thesurfaceis thepositionof aparticlethat
runsthroughx atacertaintime.

All points on path lines and streaklines describepositionsof
passingparticles.For pathlinesthesearethepositionsof onepar-
ticle over time, for streaklines thepointsdescribethepositionsof
many particlesat a singlepoint in time. With the argumentation
of the previous paragraph,thus,all path lines andall streaklines
runningthroughthebasepoint lie in theeyeletpathsurfacefor x.
Indeedboth,eyelet pathlines andeyelet streaklines,build up the
wholesurface.

Mathematicallythis canbeseenasfollows. Theeyeletpathsur-
facePa througha canbede�ned by pathlinesas

Ppath
a = f x 2 R3jx 2 pa;s(t); s;t 2 [tmin; tmax]g

andby streaklinesas

Pstreak
a = f x 2 R3jx 2 sa;t (s); s;t 2 [tmin; tmax]g :

With sa;t (s) = pa;s(t) from eq. 1 and taking into accountthat s

andt for Pstreak
a andPpath

a arerunningthroughall time valuesin
[tmin; tmax], it follows

Pa = Ppath
a = Pstreak

a :

This is the coincidenceof pathlines andstreaklines in the eyelet
pathsurface.The left imageof �gure 1 illustratesthecoincidence



Figure 2: Inserting a new line in case of diverging behavior and
ignoring an existing line for converging case.

of thesepathlinesandstreaklineswith theeyeletpathsurfacein a
syntheticvector�eld.

As mentioned,theeyeletpathsurfacerepresentsall possiblepo-
sitionsof all passingparticles.Thus,performingthetracingof par-
ticles only in �o w direction, the surfacecoversall partsof space
reachableby �o w throughthebasepoint. Takingonly thepartsof
path lines in accountthat are locatedupstreamto the basepoint,
theeyeletpathsurfacerepresentstheregion whereall �o w passing
theeyelet is originatedfrom. Applicationsof theseinterpretations
of the surfaceare discussedin section6.4. Eyelet path surfaces
canalsobeseenaspathsurfacesthathave a streakline asstarting
curve. Wideningup theeyelet to a line or a smallareawould lead
to a threedimensionalcounterpartof eyeletpathsurfacessimilar to
a �o w volume[2].

5.2 SurfaceConstruction

In our implementationthe surfaceis constructedusing the eyelet
pathlines. We move alongtwo neighboringlinesandsamplethem
regularly aftera constantstepsize. We connectthesepointsto tri-
anglesasshown for linesc andd in theleft imagesof �gure 2. Two
consecutive pointson bothlinesform a quadthatis built up of two
triangles. The diagonaledgeconnectsthe pair of oppositepoints
thathasthesmallerdistance.

Neighboringlines startat very closepointsin time (e.g. tc, td)
andasthechangeof vectorsalongthe time axis is continuousthe
shapeof neighboringlines,in many cases,looksvery similar. The
continuity in time resultsfrom the linear interpolationin time that
is performedto obtainvectorsbetweenthe time stepsprovidedby
theconsidereddataset.As differingshapemayimply “shift” in arc
length and increasingdistancebetweenneighboringlines, this is
crucialfor thequality of theaforementionedway of generatingtri-
angles.However, for stronglychangingvector�elds slow varying
shapeis not alwaysgiven. Diverging behavior of the lines is one
casewherethedistancebetweenthelineschanges.In this casewe
inserta new line betweenthediverging lines. We do this in a way
very similar to the approachof Hultquist [7]. Figure2 illustrates
the idea in the left image. The distancebetweencorresponding
points on neighboringlines a and c is controlledby a threshold.
If the distanceexceedsthe thresholda new line (b) hasto be in-
serted.Unfortunately, we cannot just starta new pathline in the
middlebetweenthetwo consideredpoints(like Hultquistdoes),as
this new pathlines,dueto numericalerrors,would not necessarily
run throughthe eyelet point x. Note alsothat not only the spatial
position,but alsothepositionin time would have to bedetermined
for thenew startpoint. We foundthat this is not a trivial task. So,
having not thesameoptionasHultquist,we startthenew pathline
(b) at thebasepositionx for tb = 0:5(ta+ tc). Weareawarethatthis
proceduremeansmuchextra computationtime,however, we think
it is well spentin orderto ensureaccuracy.

The new path line is not usedfor triangulationfrom the base

Figure 3: Reuseof previously computed line for diverging behavior
after convergence.

Figure 4: Split of eyelet path surface originating from eyelet above
wing apex due to large angle between line segments.

pointonbecausethiswouldrequireto restartthetriangulationfrom
the beginning, what, obviously would be a tremendouswasteof
computationtime. Instead,we take asmany stepson thenew path
line aswe took on a andc until the distanceexceededthe thresh-
old. Thereachedpositionis thenthe�rst of line b usedfor surface
construction.From thereon lines a andb, and lines b andc are
theneighboringlinesconsideredfor triangulation.For thecontrary
caseof converging lines (see�gure 2, right) we simply omit the
positionsonthepathline in themiddleandregardeandg asneigh-
bors.

Figure3 shows pathlines thatat �rst draw nearerto eachother
anddivergeafterwards.Thedivergencehereis handledasaspecial
case.Wedonotalwayscomputeanew pathline but checkwhether
we have previously computedlines in the time interval associated
to thetwo diverging lines. If thereis only onesuchline weuseit to
compensatethedivergence.In thecaseof morethanonepreviously
computedline, like lines2 and3 in �gure 3, wechosetheline with
startingtimenext to themiddleof thestartingtimesof line 1 and2.
We do not detectsequencesof convergenceanddivergence,but, in
fact,checkfor alreadycomputedlinesfor everydivergence.

Very rapiddivergenceof neighboringlines is detectedandhan-
dled as proposedby Hultquist [7]. This meanswe computethe
anglebetweentwo consideredpathline segmentsand,if largean-
glesshow up,stoptriangulationbetweenthesepathlines. We thus
split thefront of thesurfaceinto two separateparts.An examplefor
sucha strongdivergencecanbeobserved for theeyeletpathlines
shown in �gure 4. Thesurfaceis split up into threepartshere.

5.3 EyeletPosition Selection

Theusefulnessof theeyeletlinescruciallydependson theposition
of theeyelet,i.e. on thepositionsharedby all computedpathlines.
As path lines througha point only changewhen the �o w at and
aroundthispointchangesover time,theeyeletpathlinesfor steady
�o w collapseto oneline. Intendingvisualizationof time-dependent



�elds we do not considersteadybut unsteady�o w here,but also
for unsteady�o w wide regionsof nearlyunchangingvelocity are
possible.Theonly conclusionthatcanbedrawn from thecollapse
to oneline is theexistenceof a(nearly)steady�eld, in generalanot
very interestingresult. Hencethe positionof the eyelet shouldbe
chosento lie in regionsa priori known to be interestingor at least
in regionswherethe�eld is unsteady.

We found the regions and positionslisted in the following to
yield insightfuleyeletpathlines.

Edgesand Cornersof Flow-PassedObjects Near to edgesand
cornersof objects,�o w often splits or changesits behavior.
Hence,interestingeyeletpositioncanbefoundthere.There-
gion aroundtheapex of thedeltawing (seesec.6 and�gs. 1
and4) is agoodexamplefor this.

Vortex Cores Positionsin vortex coresyield eyeletpathlinesthat
canhelpunderstandingthefeedingprocessfor a vortex. The
surfaceconstructedfrom thebackwardsintegratedeyeletlines
describestheregionwheretheparticlesin thecorecomefrom.

Singularities Eyeletpathsurfacesstartingnearsingularitiesyield
insightin their becomingandevolution.

RegionBehind Flow PassedObject Turbulence and swirling
motionoftenappearbehindobjectsimmersedin a �o w. The
sourcesof thesebehaviors can be studied by positioning
eyeletsthere.

ActiveRegions In general,following theargumentationat thebe-
ginningof this subsection,regionswith high activity serve as
interestingeyeletpositions.Thevariation�elds presentedin
section4 canbeemployedto �nd suchregions.

Which positions to choose,in general,dependson the task.
However, in many casesthe positionsof someof the mentioned
locationscoincide.Thedeltawing datasetdiscussedlater is anex-
tremeexamplefor this, sincetherethe locationsof singularities,
highactivity andthevortex coresof themainvorticescoincide.

As eyeletlinesareusedfor studyingthein�uenceof oneposition
in space,in mostcasesonewill draw only the linesor thesurface
for oneeyelet. For presentation,however, it maybe interestingto
show the in�uence of a numberof eyelets. We found that using
differentcolor rangesfor differenteyeletsandtransparentsurfaces,
it is possibleto createan understandablevisualizationfor around
six eyelets.But notethatthisnumberstronglydependsontheposi-
tionsof theeyeletsandon theconsidereddatabecauseof possible
occlusion.

6 RESULTS, APPL I CATI ONS AND DI SCUSSI ON

Wetestedourmethodsusingrealandsyntheticdatasets.In thissec-
tion wedescribetherealdatasetsandpresenttheresultsof applying
ourmethodsto them.

6.1 Datasets

6.1.1 DeltaWing

We studieda CFD simulation1 of air�o w arounda sharp-edged
deltawing atsubsonicspeed(Mach0.2).Theinitially alreadyhigh
angleof attackincreasesover time,resultingin thecreationof vor-
tex bubbles,i.e. in the breakdown of the main vortices. The sim-
ulationshows theevolution of theprimary, secondaryandtertiary
vortex structuresover time andthebreakdown of themainvortices

1This simulationdatasethasalreadyservedassubjectof studyfor other
authors.Seefor example[5, 18]

Figure 5: upper row: Top view of isosurfaceof pressurefor �rst and
last time step of hurricane Isabel showing its movement throughout
the simulation. lower row: Isosurfacesin vector variation �eld and
dot product variation �eld showing the trace of the hurricanescenter.

Figure 6: Eyelet path lines integrated backwards from eyelet near
land fall of Isabel (North Carolina) and transparent isosurfaceof dot
product variation �eld.



abovethewing. For our testswepickedoutevery tenthof the1000
time steps.Thegrid is constantover time, it consistsof roughly3
million verticesand11.1million unstructuredcells.Altogether, the
datasethasasizeof 6.3GB.

6.1.2 HurricaneIsabel

As secondrealisticexample,we testedour methodson datapro-
ducedby a simulationof hurricaneIsabel2 from theU.S.National
Centerfor AtmosphericResearch.Thedatasetwasprovidedin con-
text of the IEEE Visualization2004contest.It consistsof several
time-varyingscalarandvectorvariablesona500� 500� 100recti-
lineargrid for 48 time steps.Betweenconsecutive time stepsthere
is a time spanof onehour. For our testswe useda spatiallysub-
sampledversionof the dataset. The graphicaloutputis scaledin
z-direction(vertical)for amoreappealingvisualization.

6.2 Data Handling and Performance

All computationswerecarriedout on a standardPC with a 64-bit
OpteronCPUrunningat 2 GHz. Thevirtual mainmemoryof the
machineconsistedof 3 GB RAM and22 GB swapspace.Having
the 64-bit CPU it is possiblefor us to addressmorethan4 GB of
mainmemoryandthusto loaddatasetsup to 24GB within asingle
process.

For computingthevariation�elds every positionof thedatahas
to beprocessedfor eachtimestep.Thus,nostrategy for pre-loading
timestepsisneeded.Vectorvariationanddotproductvariationboth
takeaboutsix minutesfor thewholedeltawing dataset.Thisscales
linearlywith thesizefor otherdata.

It wouldbedesirableto have real-timeinteractivity for thecom-
putationof eyelet linesandeyeletpathsurfaces.However, at least
for large datasetsthis is not possibledueto several reasons.The
�rst reasonis thatintegrationonirregulargridsusingaRungeKutta
schemeis not computationallycheap. Secondlythe computation
time dependson thenumberof computedstreamlinesandthuson
the resolutionof thesurface. Finally, the fact that time-dependent
datadoesnot�t into theRAM slowsthecomputationdown because
the datahasto be loadedfrom disk. Many approachesfor visual-
izationof time-varying�elds usespecialdatastructuresfor acceler-
atingcomputations.This is notpossiblein ourcase.As eyeletpath
linescanrun throughany point in timeandspacewecannotdeter-
mineany of theneededdatain advanceto pre-loadit. However, as
wehold thecompletedatasetin thevirtual mainmemorythecache
of theoperatingsystemcanyield performancegainswhencomput-
ing pathlinesthatdo not differ much.This helpswhencomputing
only few lineswith smallnumericalprecisionfor fasttestsandaf-
terwardscomputinga betterresolvedeyeletpathsurface.Thecells
for the �rst computationwill be kept in the cacheandaccelerate
thesecondintegration.As ourdatastructure[11] is organizedwith
arraysandasgrid cells of CFD dataoften areorganizedin a way
that neighboringcells arestoredcloseto eachother, not only the
cellsof previouscomputationsbut alsotheir neighboringcellsare
cached.Our datastructurealsosupportsfastpoint locationwhich
is very importantfor integral curve computationon irregulargrids.
While thecomputationsfor surfaceslike in �gure 4, wherewehave
over7 million �eld lookupsfor theRungeKuttascheme,takeabout
two minutes,computingsurfacesfor nearbyeyeletsthereaftertake
lessthan20seconds.

6.3 Variation Field

Four isosurfacesfor differentisovaluesin thevectorvariation�eld
of thedeltawing areshown in �gure 7. The�rst surfacearoundthe
wholewing revealsnospecialfeatures.It only shows thatthemost

2http://www.vets.ucar.edu/vg/isabeldata/

a b

c d

Figure 7: Isosurfacesin the vector variation �eld of the delta wing
dataset. Isovalues (a-d): 2(10% of all values), 10, 50(90%) and
200(98%)

activity canbe found aroundthe wing, which is cleara priori. In
thenext two imagesthecentersof themainvorticesemergestepby
step.For thelastimagetheisosurfacesdonotcover thewholevor-
ticesanymore,but form aroundtheir breakdown bubbles. Hence,
themostinterestingfeaturesfor this datasetareexactly wherethe
mostactivity canbefound.Thevolumeenclosedby theisosurfaces
for largevaluesarethusvery interestinglocationsto placeeyelets.
As mentionedbefore,in fact threecriteria for interestinglocations
coincidethere: large activity, vortex core line (early time steps)
andstagnationpointcorrespondingto vortex breakdown (latetimes
steps).Eyeletpathlinesstartedtherecanbeseenin �gure 8.

Isosurfacesin thevariation�elds of thehurricaneIsabeldataare
shown in thelower imagesof �gure 5. Theredisosurfaceindicates
a region of high valuesin the dot productvariation �eld and the
blue isosurfaceencloseshigh valuesof the vectorvariation �eld.
Bothsurfacesshow thepathof Isabel'scenter. As evidencefor this
interpretation,in theuppertwo imagesisosurfacesof thepressure
for the�rst andthelast time steparegivenshowing themovement
of thecenter.

Automation Wetried to automatetheprocessof isolvaluese-
lection but discoveredthat this is not possibleoffhand. Sincewe
hadgoodexperiencefrom the deltawing (see�g. 7) we tried to
choosetheisovaluessuchthatthey dividedthedatasetat10%,90%
and98%of thenumberof values.This, unfortunately, yieldedun-
satisfyingresultsfor someotherdatasets.Evenchoosingisovalues
in the mentionedway for a singledatasetbut for differentvaria-
tions not alwaysyieldeduseful results. However, large isovalues
area goodselectionfor mostdatasets.Thehurricanedatasetis a
goodexamplefor this becausethe two isosurfacesin �gure 5 are
at 94% and98% of the numberof values. As automationis not
possible,explorationof variation�elds hasto beinteractiveandthe
userhasto choosethe isovalues. This is no disadvantage,since,
asmentionedbefore,the rangeof usuallyusefulvaluesis limited
and,in addition,fastisosurfaceextractioncanbeachievedby using
accelerationdatastructures[15]. Computingthevariation�eld and
settingup the accelerationstructurecanbe doneautomaticallyin
onestepin post-processingof thesimulation.



6.4 EyeletPath Lines

Thedeltawing appearedto beaninterestingexamplein ourstudies
of eyeletpathlines.Thevorticesdominatethis �o w �eld. Thusthe
�rst questionsthatarosewere: Which particlesenterwhich vortex
and are therepositionsfrom whereparticlespassingat different
timesenterdifferentvortices. In �gure 1 eyeletpathlinesrunning
into different vorticesare drawn. While all particlespassingthe
left eyelet run into the left primary vortex, the tracesof particles
passingthebasepoint centralabove theapex leadinto vorticeson
bothsides.Thelinesturn from theright primaryvortex to theright
secondaryvortex and�nally run into the left secondaryvortex. A
very similar situation,usedto depictthesplitting of thesurface,is
shown in �gure 4. However, noticethatfor theeyeletin �gure 4 the
linesleadinto thevorticesin reverseorder. Thebasepointsof these
similar casesarevery closeto eachotherbut theparticlesrunning
throughthem,nevertheless,takeverydifferentdirections.

In contrastto the vorticesof the deltawing, the vortical struc-
ture in thehurricanedatasetmoves. Thus,we couldnot selectan
eyelet“in” thevortex. However we foundanevenmoreinteresting
selection,namelythelocationof Isabel's landfall. Thelinesgener-
atedby integratingagainstthe�o w directionareshown in �gure 6.
They representthepathsof particlesapproachingto theeyelet,i.e.
thewindsdirectedto its position.Thelengthsof theparticleswith
largetimevaluescorrespondto thevelocityof theparticlesbecause
fasterparticlescover a largerdistancein thesametime. Lines for
verysmallstarttimevalues(bluelines)areshortbecausetheback-
ward integrationreachesthe �rst time step,wherethe integration
hasto end,very fast.Not consideringthese,thelengthof theother
lines(violet to red)show theevolution of thehurricane:Thewind
hashigh velocitiesfor the approachinghurricanebut slows down
immediatelywhenits eye reachestheeyelet. Not only thelengths,
but alsothe directionsof the lines reveal the advance.At �rst the
wind comesfrom theocean,it developsa turnasIsabelapproaches
nearerand,�nally , whentheeye of thehurricanereachesthebase
pointof thelines,it attractsair from inland.

In therestof thissectionwegivepossibleapplicationsfor eyelet
linesthataimatparticularphysicalproblems.

6.4.1 Origin of particlesin Vortex Bubble

Eyelet path lines startedinside a vortex bubble, can aid analysis
of vortex breakdown. Integrating eyelet lines backwardsin time
from a positionknown to lie in a breakdown bubblefor sometime
steps,shows the origin of the material in�ating the bubble. For
our experimentswe startedthe lines at the positionof oneof the
stagnationpointsin time step750(�g. 8). Thesestagnationpoints
areknown to playacentralrole for thecreationof therecirculation
bubble. We computedlines for two different time intervals. For
theright imagethe interval containedall time stepsof thedataset,
while thelinesin theleft imagecorrespondto aninterval containing
only time stepswith a pronouncedbubble.Theleft imagesshows,
in agreementwith known facts,thatthevortex bubblesarefedonly
from very small regions aroundthe centerof the vortices. Blue
lines in the right imageshow how particlesrunning throughthe
basepointsbeforethe appearanceof the bubblescomealsofrom
regionsof thevorticesapartfrom their centers.

6.4.2 Combustion

The gas and air�o w in combustion chambersis often studiedto
achieve high effectivenessof the reactionprocess.An appropriate
mixture of gasandair is neededfor a properreaction. The worst
conditionsfor thecombustionarewhereonly air or only gasis in a
regionasno reactionwill takeplacethere.

Eyeletlinesandtheircorrespondingsurfacecanprovideauseful
tool for analyzingthe �o w in suchregions. Given a region under

suspectto containno air or no gas, one can selectpoints in this
region andcomputetheir eyelet linesbackwardsin time. Thelines
thenprovide anoverview of theoriginsof all particlespassingthe
selectedpoint. If the linesonly reachthe inlet for air respectively
only theinlet for gasthisshowsthat,indeed,noair respectively gas
will ever reachthepoint.

7 CONCL USI ON AND OUTL OOK

In this paperwe have presentedtwo methodsfor visualizingthree
dimensionaltime-dependentvector �elds using steadygraphical
representation,i.ewithout theuseof animation.Onemethodshows
thetemporalevolution of pathlinesor streaklinesemanatingfrom
a certainspatiallocationcalledeyelet. We connectedtheselinesto
a surfaceto displaythe whole areabelongingto the �o w through
theeyelet. Thesecondmethodproposedin thepaper, computesan
“activity map” for thedataby measuringlocal changesof vectors.
Isosurfacesin themapshow regionsof highactivity andwereused
to give anoverview of theactivity in the �eld. Differentmeasures
werediscussed.Both methodswerecombinedby taking regions
of largevariationas�rst guessfor interestingpositionsof eyelets.
Appliedto large�o w datasetsandinterestingphysicalproblemsour
methodsprovedtheirusefulness.

As futurework it maybeinterestingto performthe�o w localiza-
tion proposedby Wiebeletal. [21] for eachtimestepandapplythe
techniquespresentedthroughoutthispaperto theobtained�elds.

For thevariation�eld computationweplanto exploremoresim-
ilarity measuresandtesttheir usefulnessfor describingtheglobal
structureof time-dependentvector �elds. We also plan to study
possibilitiesfor applyingour methodsto datasetswith moving ge-
ometryor moving frameof reference.
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