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Abstract— We present, extend and apply a method to
extract the contribution of a subregion of a data set to the
global �ow. To isolate this contribution we decompose the
�ow in the subregion into a potential �ow that is induced
by the original �ow on the boundary and a localized �ow.
The localized �ow is obtained by subtracting the potential
�ow from the original �ow. Since the potential �ow is free
of both divergence and rotation the localized �ow retains
the original features and captures the region-speci�c �ow
that contains the local contribution of the considered sub-
domain to the global �ow. In the remainder of the paper,
we describe an implementation on unstructured grids in
both two and three dimensions for steady and unsteady
�ow �elds. We discuss the application of some widely
used feature extraction methods on the localized �ow and
describe applications like reverse-�ow detection using the
potential �ow. Finally, we show that our algorithm is robust
and scalable by applying it to various �ow data sets and
giving performance �gures.

Index Terms— Flow visualization, Neumann problem,
Local contribution, Potential �ow.

I. I NTRODUCTION

FLOW visualization plays an important role during
the design process of all kinds of objects in science

and industry. Cars, air planes, turbines, motors and
buildings are only few examples. They are very different
but for all of them the behavior of �ow through or around
them can be crucial for durability and usability. Common
to all of these objects is that their geometry has large
in�uence on the �ow through or around them. Many
standard �ow visualization techniques ignore this fact
completely. They only treat the original velocity �eld
or simple derived �elds and thus can miss important
features. If, for example, the �ow is dominated by a
large near-constant component, as is common in the
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�ow past a stationary object, critical points (important
for topological analysis) and vortices often do not show
up at all although the �ow can be more complicated
than the velocity �eld suggests at �rst glance. A fast,
not necessarily near-constant, component of �ow through
tubes or similar objects can hide the mentioned features
in the same way. This is where the geometry comes
into play, as the dominant �ow most of the time is
strongly in�uenced by the geometry. A bent tube is a
simple but intuitive example for this. In cases with such
dominant �ow the analysis of the �ow greatly bene�ts
from removing the hiding component and treating the
remaining local component of the �ow.

The ideas presented in this paper revolve around the
notion of localized �ow analysis[1], i.e. the analysis
of the contribution in a subregion to the global �ow of
a given data set. To this purpose, a so-calledpotential
�ow is constructed that matches the original �eld on the
boundary of the subdomain but is otherwise simple in the
sense that it has vanishing divergence and curl. In other
words, it represents the laminar �ow in the subdomain,
which is induced by the geometry of the domain and
the conditions on its boundary [2]. By subtracting this
�eld from the original �ow (see Fig. 1), we are left
with a localized �ow that is con�ned to the subdomain
under consideration and contains the local contribution to
the global �ow. Visualization methods that are based on
divergence or rotation of the �ow (both local in nature1)
are unaffected by this approach since the localized �ow
retains the original rotation and divergence. Methods
based on the velocity �eld are able to detect features
in localized �ow which were hidden in the original �ow.

The method presented here works well for both two-
dimensional and three-dimensional �ow �elds and is
even extensible to unsteady �ows. The choice of sub-
region is arbitrary up to the condition that it is a simple
domain with piecewise smooth boundary. We describe an

1One reviewer had concerns about the notion of rotation and
divergence beinglocal. See Appendix I for a dicussion of his example
problem.
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Fig. 1. Illustration of the different components of the �ow around the deltawing in EDELTA data set.Left : Original �ow �eld from the
CFD simulation,Middle: Potential �ow computed by the original �eld's �ow normal to the boundary. Note that the �ow is simple but not
constant.Right: Localized or region-speci�c �ow obtained by subtracting the potential �ow from the original �eld.

improved version of the algorithm presented in [1] which
implements the given ideas on unstructured triangular
or tetrahedral meshes using a �nite-element approach
and extend it for the use with time-dependent �elds.
Although the computation of the potential �ow is a
complicated numerical procedure, our algorithm works
well even on large CFD data sets with millions of cells.

Our work can be seen as having similarities to what
others have published before (cf. [3]–[5]), therefore we
describe some essential differences to the work presented
here in Section II as well as other work that is related
to this paper. In Section III, we recall the mathematical
concepts that the region-speci�c �ow is based on and
extend these concepts to �t the time-dependent case
in Section IV. We give a detailed discussion on the
usefulness of the region-speci�c and potential �ow for
data set analysis in Section V. The implementation on
triangular and tetrahedral grids is the topic of Section VI.
Finally, we discuss the application on some examples in
Section VII. Section VIII concludes on the presented
work.

II. RELATED WORK

The notion of localized �ow analysis under preser-
vation of the original characteristics of the �eld (i.e.
divergence and rotation) is in part related to work
published by Polthier and Preuss [3], [4] (in 2D) and
Tonget al. [5] (in 3D). These authors employ the Hodge
decomposition theorem from vector analysis, stating that
any vector �eld can be decomposed into three �elds
containing the divergence, rotation and harmonic parts.
The decomposition is given in terms of potentials for the
divergence- and rotation-components,

v = grad u + curl w + h;

which are computed explicitly. Analysis is then at-
tempted by locating features as extremal points of the
�rst two components. Although these approaches seem

quite similar to what we describe here, our motives
and technique are different. It is our aim to analyze
the localized �ow with conventional �ow visualization
techniques, as opposed to making use of the potentials
for that purpose. Moreover, in spite of the super�cial
similarity between the potential �ow and the harmonic
�eld h from above, we believe that our approach is
better suited to the localized analysis of �ow since we
use speci�c boundary conditions to guarantee that the
potential �ow contains the part of the �ow that does not
originate in the considered domain. No such condition is
imposed onh. Last but not least, the computation of the
potential �ow is conceptually simpler than that ofu and
w , as only one potential and this only of scalar nature
has to be computed.

Concerning topological analysis and feature extraction
of vector �elds, there is a large body of literature
available. Postet al. [6] provides a good overview. Of
special interest in this paper are topological methods as
treated by many authors, e.g. Helman and Hesselink [7],
Globus [8], Scheuermannet al. [9], Tricocheet al. [10]
and Theiselet al. [11] to name just a few. We are also
concerned with more general feature extraction methods,
such as the vortex core line extraction method of Sujudi
and Haimes [12] and the region-based� 2-criterion by
Jeong and Hussain [13] that we discuss in the context of
the localized �ow. As a fast moving frame of reference
is a simple example for a dominating �ow component
hiding vortices, the work of Sahneret al. [14] concerning
a vortex core extraction method that is independent of the
frame of reference is of interest. The method computes
ridge and valley lines of Galilean invariant vortex region
quantities, such as the mentioned� 2-criterion to extract
the vortex core lines. Stegmaieret al. [15] combine the
� 2-criterion with the method of Banks and Singer [16]
to extract Galilean invariant but distinct regions for
individual vortices.

There is some recent work by Larameeet al. [17]
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which presents a simple method for the extraction of
regions of reverse �ow (or recirculation). They investi-
gate data where the main �ow should go from negative
to positive x-coordinate and regard regions containing
vectors with negativex-component as reverse �ow zones.
Obviously, this idea can be applied to arbitrary main �ow
directions (different fromx, y and z) by evaluating the
dot product of the vectors with the respective direction
and testing for negativity. However, for this method the
main �ow direction has to be known a priori and it has
to be constant all over the dataset. As we will see later,
these problems can be circumvented using the potential
�ow computed by our method.

III. L OCALIZED FLOW COMPUTATION

In the following, let v : Rd ! Rd; d = 2 ; 3 be
a continuous (�ow) vector �eld. Let 
 � Rd be an
open, bounded and connected domain andn the outward
normal �eld on @
 .

In order to analyze the speci�c contribution of the
�ow in 
 to the global �ow �eld, we de�ne theregion-
speci�c �ow vR : 
 ! Rd by requiring two essential
conditions:

1) it retains the essential behavior of the �ow in terms
of rotation and divergence, i.e.

div vR = div v and curl vR = curl v on 
 :

2) it is isolated from the global �ow on the boundary
of the subdomain, i.e. the region-speci�c �ow
through the boundary vanishes:

vR � n = 0 on @
 :

The suitability of these conditions is discussed in more
detail in Section V. The difference of global and region-
speci�c �ow is then given by

vP := v � vR :

Owing to the linearity of divergence and curl,vP must
satisfy

div vP = 0 and curl vP = 0 on 
 ; (1)

and we �nd that

vP � n = v � n on @
 : (2)

We next look at how the construction ofvP can be
achieved by a simple mathematical procedure.

A. A Special Neumann Problem

Let us assume thatvP is given as the gradient of a
function u : 
 ! R (then vP is calledpotential �ow).
It is immediate that

curl vP = curl grad u = 0 on 
 :

Requiring thatvP has vanishing divergence, we compute

0 = div vP = div grad u = � u on 
 ;

where � denotes the Laplace operator on scalar func-
tions. Rewriting Eq. (2) in terms ofu, it turns into

n � grad u = v � n on @
 :

Hence, forvP := grad u to ful�ll the conditions (1) and
(2), u must solve

� u = 0 on 
 (3)

n � grad u = v � n on @
 (4)

This class of problem is called a Neumann-Laplace
problem foru, and it is uniquely solvable up to a con-
stant. From this construction, we are able to determine
vP by solving for u. Since we are only interested in
grad u, the constant is essentially factored out and does
not in�uence the result. The region-speci�c �ow is then
given by

vR := v � grad u:

A unique solution to (3) and (4) can be obtained by
requiring Z

@

v � n = 0 ; (5)

implying that the total �ow through the boundary must
vanish. This ensures that the right hand side is in the
orthogonal complement of the kernel of the Laplacian
with pure Neumann boundary conditions. The compati-
bility condition (5) is a-priori ful�lled for incompressible
�ows (e.g. liquid �ow), since by Stokes' theorem

Z

@

v � n =

Z



div v = 0 :

In the next section, we detail a modi�cation of the
Neumann problem for the case of compressible �ows.

B. Compressible Flows

When considering compressible �ows, e.g. those aris-
ing as solutions of the full Navier-Stokes equations, the
compatibility condition (5) does not necessarily hold.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,VOL. 1, NO. 8, AUGUST 2002 4

However, we note that compressible �ows satisfy the
continuity equation2.

@�
@t

+ div � v = 0 ; (6)

where � > 0 denotes a material density that may vary
spatially. Based on this, we are able to enhance our
approach from above to guarantee results for steady
compressible �ows. We propose a modi�ed Neumann
problem in the form

� u = 0 on 
 (7)

n � grad u = ( � v ) � n on @
 : (8)

As for steady �ows @�
@t = 0 , the compatibility condition

for this system coincides with Eq. (6) and is hence
ful�lled. Then, vP is again divergence- and curl-free and
by setting

� vR := � v � grad u

it follows

n � � vR = n � (� v � grad u) = 0 on @
 :

Dividing by � we �nd

n � vR = 0 on @
 ;

i.e. the region-speci�c �ow is again con�ned to
 and
inherits the characteristics of the original �ow.

IV. EXTENSION TO TIME-DEPENDENTCASE

As the notion of localized �ow can be formulated with
two purely mathematical conditions (see Sec. III), it is
easily extended to unsteady �ow.

In the steady case the �rst condition requires that the
localized �ow exhibits the same divergence and vorticity
as the original �ow. Lifting this condition to the unsteady
case it says that the localized �ow has to have the
mentioned divergence and vorticity all the time. As,
now, the computation of divergence and vorticity do not
depend on time in any way, this just means that the
condition from the steady case has to be ful�lled for
every instantaneous time step of the unsteady �eld.

Proceeding from the theoretical considerations to prac-
tical CFD datasets, we �nd that only few instantaneous
time steps are given. The �elds between these steps have
to be interpolated. Fortunately, the following considera-
tions show that if we have two time steps ful�lling the
�rst condition for the localized �ow all �elds obtained
by linear interpolation ful�ll the same condition.

Let v i
R and v j

R be two �elds that, together with two
time stepsv i andv j of the original �eld, satisfy the �rst

2We note that Wiebelet al. [1] in the same context erroneously
refer to Eq. (6) as the conservation of momentum law.

condition. Letv �
R andv � be two �elds interpolated from

the respective �eld above withi � � � j . The linear
interpolation forv �

R satis�es the following equation:

v �
R = v i

R +
� � i
j � i

(v j
R � v i

R ):

Then with the linearity of the divergence

div v �
R = div v i

R +
� � i
j � i

(div v j
R � div v i

R )

and with div v i
R = div v i and div v j

R = div v j it
follows

div v �
R = div v i +

� � i
j � i

(div v j � div v i ) = div v � :

The same considerations hold for the vorticity and
yield curl v �

R = curl v � . Thus, as mentioned above,
the �rst condition holds for the interpolated �elds too.

The second condition requires the potential �ow's
component normal to the boundary to be zero. Again,
this condition does not depend on time and ensuring that
it is satis�ed for the time steps provided, is suf�cient to
guarantee that it holds for all instantaneous time steps.
Note that the above considerations also imply that (1)
and (2) hold for �elds interpolated between potential
�elds of given time steps.

Summarizing this section, we �nd that the localized
�ow in the time-dependent case is obtained by comput-
ing the localized �ow for the given time steps (as in the
steady case) and linear interpolation between these time
steps.

A. Unsteady Compressible Flows

For the steady case, we gave a modi�ed Neumann
problem to handle compressible �ows in section III-
B. Unfortunately we are not able to give a modi�ed
Neumann problem for all unsteady �ows. This is due to
the fact that here@�

@t does not necessarily vanish and thus
the continuity equation (6) does not necessarily coincide
with the compatibility condition (5).

However, compressibility does not always mean that
condition (5) is not ful�lled. It is still possible to check
whether the condition is ful�lled directly by evaluating
the boundary integral. This check can be performed
for the original Neumann problem or for the modi�ed
Neumann problem. If the condition is ful�lled for one
of the systems one just solves this system to get the
potential for the divergence and vorticity-free �ow.

Additionally, in our experiments, we found that our
implementation (which is described later in this paper)
is very tolerant against small deviations from condition
(5). The solutions are in�uenced only marginally by
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small deviations. However, we are working on a modi�ed
scheme for compressible unsteady �ow with strongly
time-varying density.

V. I NTERPRETATION OF THEFIELDS OF THE

LOCALIZATION PROCESS

So far we have only considered the mathematical
construction of the region-speci�c �ow. Along the way,
some conditions were imposed to guarantee solvability
of the problem. We will now dedicate some thoughts
as to how these conditions affect applicability of our
method to the general localized analysis of �ows. We
will also discuss the interpretation and use of the
�elds introduced in the previous sections. More dataset-
speci�c results and application examples are given in
Section VII.

A. Scalar Potential

The �rst �eld appearing during the localization pro-
cess is the scalar potential obtained as solution of the
Neumann problem. For the Hodge decomposition Polth-
ier et al. [4] have used features in the scalar potential to
identify features of the �ow �eld. We will not go into
further detail about the scalar potential as all interesting
features also appear in the potential �ow which, as
mentioned, is the gradient of the scalar potential. Note
additionally that all extrema of the scalar �eld lie on its
boundary.

B. Potential Flow

From a feature oriented point of view the potential
�ow seems to be uninteresting. It has vanishing diver-
gence and rotation and thus is irrotational and free of
sinks and sources (saddles are possible, see the close-up
in Fig. 2b). It is very simple, in fact it is thesimplest
�ow (minimum of total kinetic energy, see [2]) matching
the original in�ow and out�ow on the boundary of the
considered region. Most of its behavior is determined by
the geometry of the region, the rest is determined by the
Neumann boundary conditions.

These properties, however, make it seem uninteresting
only at �rst glance. The in�uence of the geometry of
the region is very important. Engineers knowing the
geometry of a region are able to predict the potential
�ow in the region with little effort. The potential �ow
shows how the �ow would pass a region or object if
viscosity and wall friction were negligible [2]. Thus it
can be regarded as the most natural main �ow direction.

As alluded to in the related work section, this property
can be used to detect regions of reverse �ow. Treating the
direction suggested by the potential �ow as main �ow

a) original �ow b) potential �ow

c) average �ow and d) localized �ow
original �ow with
removed average �ow

e) reverse �ow region f) streamline in
and strength reverse �ow region

Fig. 2. Imagea) shows streamlines of the �ow in a draft tube of a
water turbine. Imageb) shows how the potential �ow follows the turn
of the tube and a close up of the lower left corner. Imagesc) andd)
demonstrate the advantages of subtracting potential �ow �eld instead
of constant average �eld. As the constant �ow does not follow the
tube, the �ow with subtracted average often leads directly into the
walls of the tube. The localized �ow respects the boundary and does
not lead into walls. In imagee) a volume rendering shows locations
and strength of reverse �ow regions in the tube. Imagef) shows an
isosurface that represents the border of regions with reverse �ow of
another time step. A streamline in the original �ow shows the reverse
�ow.
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direction we compute the dot product of the normalized
original �ow with the normalized potential �ow. This
yields a scalar value at every position which indicates
whether the original �ow has a component in (positive
value) or against (negative value) the main �ow direction.
Then regions of reverse �ow are easily identi�ed as
regions of negative value. Their borders can be visualized
by isosurfaces of zero isovalue (see Figs. 2f and 4).

C. Region-speci�c Flow

From a purely physical point of view it does not seem
feasible at �rst glance to manipulate a �ow �eld in order
to further its analysis. It is known practice, however,
to decompose �ow �elds (see e.g. [2]) or to subtract
a constant vector �eld to reveal structures that are not
visible in the original �eld (heuristically, the average
(boundary) �ow is subtracted). The latter is justi�ed by
the principle of Galilean invariance which states that the
properties of �ow have to be the same for a constantly
moving and for a resting observer. However, in most
cases, this approach is not appropriate as it does not
preserve boundary conditions. For example, in the �ow
around a stationary object (see Fig. 3) or through a
channel (see Fig. 2), subtraction of a constant vector �eld
yields streamlines that lead into the boundary surface.
Since the boundary conditions are an integral part of the
region-speci�c �ow (via condition (2)), it does not suffer
these problems.

Furthermore, both vorticity and divergence of the orig-
inal �ow are preserved in the region-speci�c approach.
Therefore, feature de�nitions that build on these quanti-
ties and consequently algorithms that extract these fea-
tures are naturally unaffected. Recently, Sadloet al. [18]
presented analysis and visualization of three-dimensional
vector �elds based on vorticity and vorticity lines. While
the streamlines of the velocity are naturally different
in the region-speci�c �ow, the invariance of vorticity
lines and hence the non-changing vorticity transport in
the �ow imply that all vortical structures are kept. This
con�rms our approach to be meaningful and to contain
the information for the important features present in
the original �eld. In summary, the region-speci�c �ow
contains exactly the local domain-speci�c contribution
to the global �ow.

As the localized �ow is the difference of the original
and the potential �ow it represents the deviation of a
particle in the original �ow from the �ow induced by
the geometry. Consequently its magnitude is large where
the in�uence of wall friction and viscosity are large and
it is small where the original �ow is nearly equal to
the potential �ow, i.e. laminar. We already mentioned

that one can infer the potential �ow mainly from the
geometry of the region. Thus deviations from this �ow
are what is interesting in a �ow. For the detection of
these deviations the magnitude of the localized �ow or
better the ratio of the magnitude of the localized and
the original �ow are considered. For two-dimensional
�ows a simple color mapping of this ratio can give a
�rst overview. Isosurfaces and direct volume rendering
can be used for the same purpose when treating three-
dimensional �ows (Figs. VII-A and 2).

Concerning the in�uence of the frame of reference
on �ow analysis, the region-speci�c �ow delivers a
natural abstraction. For the common case that features
in the �ow are obscured by a dominating constant �ow,
the in�uence of the latter is “caught” in the boundary
conditions of the potential �ow, even if it is non-constant.
It is subsequently subtracted from the original �ow and
does not show up in the region-speci�c �ow. By this, for
the case of topological methods, critical points such as
sinks, sources and spirals relating to extremal divergence
and vorticity are much more likely to occur than in the
original �ow, enabling the use of such methods in a
broader context of �ow analysis.

Figure 3 exempli�es some of the previous consid-
erations. The 2D vector �eld shown represents the in-
compressible �ow passing around a cylinder. On the
downstream side of the cylinder, the well known Kármán
vortex street should develop. However, it cannot be
observed in the original �ow. Removing the numeri-
cally obtained average �ow reveals some but not all
of the features present and yields a strong diagonal
�ow component that has no physical interpretation. The
constructed potential �ow is very uniform except in
the vicinity of the cylinder where it re�ects the �ow
around it. Subtracting the potential �ow from the original
�ow reveals all the downstream vortical structures by
a topological analysis. In this example, subtracting the
correct downstream component (a multiple ofex =
(1; 0)T ) would also reveal all vortical structures and
avoid the uninterpretable diagonal component. However,
in practical applications (see Sec. VII-B) the original
downstream component is often not known. In these
cases the numerically obtained average vector was the
best approximation up to now.

D. Choice of Localization Region

From the mathematics of solving the special Neumann
problem 3, it is only required that the subdomain

is open, bounded and connected. These requirements
are easily ful�lled and do not constrain the choice of
region much. Regarding the numerical schemes we apply
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a) original �ow b) original �ow minus
average �ow

c) potential �ow d) original �ow minus
potential �ow

Fig. 3. Comparison of different �elds obtained from cylinder data set
with Kármán vortex street.a) Streamlines in the original �ow. Only
sinusoidal line structures adumbrate the vortices.b) Three vortices
revealed by removing average �ow.c) Potential �ow induced by the
�ow on the boundary of the considered region. Note how the �ow
attaches to the cylinder and does not seem to cross it as it would be
the case for constant average �ow.d) Subtracting the potential �ow
reveals all �ve vortices present in the considered region by use of
topology.

in the application of our ideas in the next section,
a convex domain with piecewise smooth boundary is
greatly bene�cial in terms of convergence.

Choosing a localization region appropriately as input
to the algorithm is the responsibility of the user. Often,
an a-priori region of special interest can be a good
choice and the engineers often know what is or should
be interesting in their data sets. For the applications
described in the previous subsection (reverse �ow region
detection and extraction of regions with large in�uence
of friction and viscosity) the whole dataset is chosen for
computation of the region-speci�c �ow.

E. In�uence of Localization on� 2-criterion

To support our statement that the localized �ow retains
the essential features of the original �ow, we discuss
the in�uence of the localization on the� 2-criterion in
this section. The� 2-criterion [13], as mentioned before,
is a method for detecting vortex core regions. By this
criterion a vortex core is de�ned as set of positions
with low “modi�ed” pressure, which means a set of
positions where a certain matrixS2 + 
 2 derived from
the local velocity gradientJ = r v has two negative
eigenvalues. The matricesS and 
 are the symmetric
and antisymmetric part ofJ :

J = S + 
 =
1
2

(J + J T ) +
1
2

(J � J T ):

We now recall that the vorticity can be de�ned with the
non-diagonal elements of the anti-symmetric part of the
JacobianJ as follows:

curl v = r � v = (
 2;1; 
 0;2; 
 1;0)T : (9)

Since 
 is antisymmetric, all its diagonal elements are
zero. Due to (9) and the antisymmetry all other elements
are determined by the curl ofv . As the curl of the
original and the region-speci�c �ow are equal now,

is also equal for both �ows. UnfortunatelyS is only the
same up to the sum of the diagonal elements as can be
seen by

tr (J ) = tr (S) = div v

and the fact that the divergence of the original and the
region-speci�c �ow are equal. However, this reasoning
at least yields a strong similarity between� 2 for the
original and the localized �ow. We, in fact, observed
this similarity in all our experiments, see for example
the left image of Fig. 4 for the EDELTA data set.

VI. I MPLEMENTATION

In the following, we will revisit the construction of
the region-speci�c �ow from Section III and show how
it can be achieved for discrete data sets.

We assume that the discrete �ow �eld is given on
the vertices of a simplicial (triangular or tetrahedral)
grid, a form taken by many modern CFD data sets. We
note that the derivation of the potential �ow is basically
independent of spatial dimension. In an implementation,
however, differences show up since the method works on
triangles in the two-dimensional case and on tetrahedra
in three dimensions. By formulation in the context of
�nite element methods, a uni�ed numerical formalism
can be achieved nevertheless.

The region 
 is easily discretized as a connected
subset of the original grid simplices. The Neumann
problem is then discretized on this set by the application
of a Galerkin-type �nite element method. The basic idea
is simple: by discretizingu in a nodal basisf � i g that
has one basis function for every grid point, Eqns. (3)
and (4) can be written as a linear system

A u = f A 2 Rn� n andu; f 2 Rn ; (10)

where A is symmetric and sparse (cf. [19] for a very
concise presentation of the general procedure).

The solution of this system is slightly more com-
plicated than in the usual �nite element case, owing
to the fact thatA is not positive de�nite but positive
semide�nite. This corresponds to the fact that the orig-
inal problem (3) and (4) is only determined up to a
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constant. The compatibility condition (5) translates to
X

f i = 0

implying thatf must be orthogonal to the kernel ofA. If
this discrete condition is ful�lled exactly, the commonly
used Conjugate Gradients (CG) scheme can be employed
to solve the singular system (10). Owing to inexactness
in numerical integration, this is extremely dif�cult to
ensure in practice, resulting in instability and extremely
bad performance of the iterative scheme. Bochev and
Lehoucq [20] give a possible solution to this class of
problems: by reformulating the Neumann problem as
a saddle point problem, a regularization approach can
be employed to achieve stability and good convergence
properties. Essentially, this results in a modi�ed CG
scheme that ensures that successive iterates remain out-
side the kernel ofA. We found this approach both easily
implemented and very stable.

Having obtained the discrete potentialu, taking its
gradient gives a cell-wise constant vector �eld. We use
weighted averaging of neighboring simplices to compute
the vector �eld values ofvP on the vertices of the grid.
Finally, vR is obtained by subtractingvP from v at the
grid vertices.

A is best represented in a sparse storage format. This
allows us to treat grids with millions of cells without re-
sorting to out-of-core or cluster techniques which makes
the implementation straightforward. Computational com-
plexity is two-fold: the assembly of the system matrixA
is relatively costly since the complexity is linear in the
number of grid cells. The complexity of the successive
matrix inversion is then a function of the number of grid
points and the smallest cell in-circle radius. The number
of iterations of the CG scheme can be signi�cantly
reduced by application of preconditioning. Section VII-
D and Table I provide details on the performance of our
implementation for a number of data sets.

Remark: As the matrix depends only on the grid
and its connectivity, the same matrix can be used for
all time steps in the unsteady case. Computing the
matrix once and storing it for reuse avoids repeated
costly computations and improves the performance of
the localization procedure dramatically.

VII. R ESULTS AND EXAMPLES

In this section we demonstrate the proposed tech-
niques and show how they can help in furthering vi-
sualization on several application datasets. All data sets
except theHART II dataset (which contains measured
data) result from CFD simulations conducted in actual
application research. In our analysis, we put a slight

emphasis on topological methods and feature extraction
schemes, since we believe that this class of methods is
most bene�tted by the localized �ow approach.

The presented results were computed on a standard
PC workstation with 3GB of RAM. Performance �gures
and dataset sizes are given in Table I.

A. Delta Wing Con�gurations

In the following we examine two datasets, both result-
ing from simulations of air�ow around a single delta-
type wing con�guration (calledEDELTAandTDELTA).
Both datasets were computed in the context of numerical
research into vortex breakdown by Markus Rütten at the
DLR in Göttingen. Given on large unstructured adaptive-
resolution grids, they present a serious challenge for
visualization techniques in general owing to both per-
formance issues and numerical stability problems. The
datasets are quite large with 11M resp. 15M cells.
Although they contain multiple time steps, we limit our
analysis to single time slices in this paper and although
both datasets exhibit vortex breakdown in later time
steps, we also consider time steps that do not show it.

1) EDELTA: Figure 1 gives an overview of the lo-
calization process for this dataset. The original �ow
(left image) is dominated by a large (in magnitude)
component induced by the original boundary condition.
Choosing a box around the wing geometry for the
localization, the potential �ow (middle image) captures
this component and essentially corresponds to a laminar
�ow around the wing. The region-speci�c �ow looks
interesting (right image). The primary vortical structures
are clearly visible (the �ow component along the vortex
axes is essentially removed), as is the bow wave at the
tip of the wing.

Next, we look at a time step that shows the vortex
breakdown bubble above the wing. Theoretically, the
breakdown bubble mainly consists of a recirculation zone
that is shielded by two saddle points forcing the �ow
around it (for a more detailed exposition, see [22]). Fig-
ure 5 shows the results of a straightforward application
of the Sujudi-Haimes algorithm to a spherical region
around the breakdown bubble. The original vortex core
is visible together with the breakdown saddle points (left
image). The strongly curved region is an indication of
the recirculation. However, the recirculation core is not
cleanly extracted. The right image shows an identical
visualization for the corresponding region-speci�c �ow.
While the critical points are unchanged, the recirculation
is cleanly identi�ed as a closed vortex core winding
around the original vortex. We extract exactly the same
structures as others working on this dataset [23] with
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Fig. 4. Left : Vortex core lines and volume rendering of the� 2-criterion, both computed for the localized �ow around the delta wing of
the EDELTA data set. The vortex core lines were extracted using the algorithm of Sujudi and Haimes in the parallel vectors version of
Peikert and Roth [21]. Note how the volume rendering indicates even the secondary and tertiary vortices in the localized �ow.Middle:
Zero-isosurface (red) of dot product between original and potential �ow indicating reverse �ow regions. Streamlines in the image and the
close-up show that the isosurfaces identify the recirculation in the vortex breakdown bubbles.Right: Volume rendering of the ratio of the
velocity magnitude of original and localized �ow. The opacity encodes the ratio while the color encodes the sign (positive blue, negative
pink) of (v =kv k) � (v P =kv P k). In this representation we can see both, the recirculation zones and the extent of the vortices.

different methods. Essentially, the region-speci�c �ow
is much closer to an analytic breakdown bubble model,
allowing for a clean identi�cation of this phenomenon
in this dataset.

To detect the recirculation in the same time step
as above, but assuming not to know their location in
advance, we used the potential �ow as mentioned in
Section V-B. The results can be seen in the middle and
right image of Figure 4. The middle image shows a zero-
isosurface of the dot product of the normalized original
and normalized potential �ow. It encloses the regions of
reverse �ow. The right image shows a volume rendering3

where the color represents the sign of the dot product.
The opacity, however, represents the deviation of the
original �ow from the potential �ow, i.e. the ratio of the
magnitudes of original and localized �ow. Both images
show the recirculation zones quite clear. The right image
additionally gives an impression of the deviation and thus
of the in�uence of friction and viscosity. Both are large
where the main vortices are located.

2) TDELTA: Although this simulation is quite similar
to the EDELTA con�guration, its spatial resolution is
higher. This is especially true for the region close to
the wing surface, making an analysis of the shear stress
�eld feasible. One is especially interested in separation
and attachment lines, whose extraction still poses major
problems for modern datasets. In analogy to vortex core
lines, separation and attachment lines can appear as part
of the topological skeleton of the shear �ow. Figure 6
(left) shows a LIC image of the original shear �ow,

3Because of the complexity of the CFD grids we use the techniques
introduced by Tricocheet al. [23].

Fig. 5. Close-up of the vortex breakdown bubble. In the original
�ow, the main vortex core is strongly curved and distorted (left). In
the region-speci�c �ow, the recirculation type nature of the bubble
is clearly identi�ed by the closed vortex core (right image). Critical
points are in this case unaffected by the localization.

overlaid with its topological graph. The high number of
critical points is a result of the numerically unstable shear
�ow computation that involves numerical derivatives.
Some separatrices are indicative of separation/attachment
behavior, however, the picture is incomplete. Using the
entire wing as localization region, the resulting region-
speci�c �ow shows all the features as part of its topology
(middle image). Since the subtracted potential �ow is
very smooth, the localized shear �ow does still contain
signi�cant amounts of numerical noise. In spite of this,
the extracted separation and attachment lines are of a
very good quality and match the original shear �ow
properties (right image). In analogy to the vortex cores
in the EDELTA dataset (cf. [1]), by the use of region-
speci�c �ow, it is possible to extract important features
easily as part of the topological graph.
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Fig. 6. Topology of the surface shear stress in theTDELTAdataset. The topology of the original shear �ow captures some features, but is
incomplete (left). All separation and attachment lines appear in the topologyof the localized shear �ow (middle). All images also show a
LIC representation of the original shear �ow. A close-up reveals a perfect match between original shear �ow and localized features (right).

B. HART II

TheHART II dataset does not result from a simulation.
It consists of measurements of a helicopter rotor blade
wake (cf. [24]), aiming at improved knowledge about
the evolution of the vortices generated by the wake and
reducing the rotor noise which is created by interaction
of the wake and a following blade hitting the wake.
PIV (Particle Image Velocimetry) was used to obtain
instantaneous �ow �eld data in a large observation area
and in a smaller close-up view of the vortex core. By
nature, PIV produces measurements on 2D slices of the
three-dimensional �ow �eld. We consider one such slice
with 8K vertices that cuts through the wake and thus the
wake vortices of one rotor blade.

This type of dataset is of special interest since the
correct frame of reference is unclear: while the observer
is static, the rotor blades are moving. From the left image
of Fig. 7, showing the original measured data, no vortical
structure can be inferred. Without making any assump-
tions about the correct frame of reference and using the
entire measurement domain as localization region, the
structures of primary interest are easily extracted from
the region-speci�c �ow using simple topological tools.
The two wake vortices present in the �ow are clearly
visible in the right image. The stronger vortex stems from
the last passing blade while the origin of the smaller
vortex is the tip of a blade passing earlier. The latter
vortex is smaller due to two reasons: it is older and thus
decaying and it was hit by the last passing blade (this
disturbs its vortical nature). The goal of the engineers,
which is to determine the position of the wake vortices,
is easily achieved with the region-speci�c �ow.

Fig. 7. HART II data set consisting of PIV measurements of
helicopter rotor blade wake. Left image shows original measured �ow
in a plane cutting through the wake. The wake vortices of the passing
blades are not visible. On the right, the topology of the region-speci�c
�ow reveals the vortices present in the correct frame of reference.

C. Draft Tube

This dataset represents the draft tube of a Francis
turbine, in which the runner is spinning in the inlet
part of the turbine (see Fig. 2a). The runner (at the
top) induces a spinning motion in the water, which
leaves the turbine (bottom) after passing through the
curved tube. We essentially used this dataset to illustrate
the unsuitability of the average (boundary) �ow in the
localization of such datasets.

From Figure 2 it is obvious that the average �ow
fails to approximate the overall boundary �ow due to
the strong curved nature of the domain (image c). The
potential �ow, however, follows the curved shape of the
tube (image b). Subtracting the average �ow and the
potential �ow from the original �ow (images c and d),
we observe that the localized �ow does not violate the
boundary condition on the tube wall, as opposed to the
average-reduced �ow. In summary, the region-speci�c
�ow shows a more natural behavior.
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For this dataset the detection of reverse �ow as pro-
posed by Larameeet al. [17] must fail because the main
�ow direction turns by 90 degrees while passing through
the tube. In contrast, our method using the dot product of
original and potential �ow detects the reverse �ow easily
(Fig. 2f). The volume rendering in Fig. 2e even allows
to get an impression of how strong the �ow direction
differs from the main �ow direction. The difference, i.e.
the negative dot product of the normalized vectors of
original and potential �ow, increases from yellow to red.
The bluish area shows the space surrounding the reverse
�ow for completeness.

Fig. 8. Three snapshots of an animation showing the movement
of reverse �ow in tube dataset. Notice the movement and split of
the reverse �ow region in the main vortex as long thin parts of the
isosurface.

The extension of the localized �ow approach to un-
steady �ows allows us to visualize the evolution of the
reverse �ow regions as shown in Figure 8.

D. Performance

An overview of the performance of the localization for
steady �ows (or single time steps) is given in Table I,
both for datasets we discussed here as well as for other
datasets available to us. The timings given there re�ect
the entire procedure of extracting a subregion, solving
for the potential, computing its gradient and subtracting
the obtained potential �ow. For small to medium sized
datasets the timings indicate an easy incorporation of the
localization procedure in a typical visualization work-
�ow. For large datasets this is not possible because of the
large computation time which is due to the complexity
of the numerical schemes involved. However, thelarge
computation time is only a minor fraction of the original
simulation effort, and can therefore go almost unnoticed.

VIII. C ONCLUSION AND OUTLOOK

We have presented a method to isolate the �ow in
subdomains of �ow data sets from the �ow in the neigh-
borhood by constructing an irrotational and divergence-
free �eld from the �ow at the boundary of the subdomain

and subtracting it from the original �eld. We have ex-
tended this method to unsteady �ow �elds. Furthermore,
we have given applications of components (localized
and potential) of the original �ow. While the potential
�ow can be used to detect reverse �ow regions, the
magnitude of the localized �ow can reveal regions where
the in�uence of friction dominates the �ow.

The localization retains the original features of the
�ow and is thus ready for the application of many
standard methods for feature and topology analysis. We
detailed this by examining the in�uence of the local-
ization on topology, vortex core line extraction and the
� 2-criterion. We discussed the differential equation that
has to be solved to obtain the potential �ow �elds and
described our implementation. Applied to large data sets
from CFD simulations and to a measurement data set
our method proved to be scalable and robust.

Future work may include the following research av-
enues:

� Having the time-dependent extension of the local-
ized �ow it may be interesting to track reverse �ow
regions over time to learn more about their creation
and evolution. Additionally, the interpretation of
path lines in the localized �ow is an open question
which we will address in the the future.

� As solving for the potentialu includes handling
of very large matrices we intend to implement a
parallel solver to reduce the computation time.
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APPENDIX I

As mentioned before, one reviewer raised concerns
about the notion of rotation and divergence beinglocal
in nature. We give his example problem here, as we think
that discussing it may yield deeper insight in the idea of
localized �ow.
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Region Dimension # Simplicial Cells # Vertices Computation Time in sec.
Box around cylinder 2D 4.7 K 4.8 K 0.66
HART II 2D 16.6 K 8.5 K 0.49
TDELTA (wing) 2D 156K 81K 10.2
Ball 3D 202.6 K 36.5 K 7.37
Box in furnace chamber 3D 540.0 K 964.4 K 22.03
Ball with hole 3D 1.1 M 0.4 M 119.09
Draft Tube 3D 4.9 M 0.9 M 322.07
ICE train 3D 6.2 M 1.1 M 381.16
EDELTA (box) 3D 17.3 M 3.0 M 1386.07
TDELTA (entire) 3D 25.8 M 4.5 M 3403.10

TABLE I

PERFORMANCE FIGURES FOR LOCALIZED FLOW PROCEDURE OF DIFFERENT DATA SETS

The reviewer stated that a slow moving large vortex
would provide a counter-example to the locality argu-
ment (especially for rotation).

For the discussion of his problem, at �rst it should be
noted that the mathematical de�nition of divergence and
rotation (curl) is local in nature and that this is what we
refer to in the whole paper. We know that there exists
vorticity transport in �ows and thus the rotation can
change by global in�uences. However, as we will detail
in the following, we do not believe that this in�uences
the soundness of our method for the moving vortex and
other problems.

Rotation and divergence of the region-speci�c �ow
vR are identical to the original �owv inside the domain

 in the sense of the mathematical de�nition. This is
condition (1) in section III and the essence of the whole
construction. It follows by Stokes' theorem that e.g. the
circulation around the boundary curve of any surface
inside 
 also coincides:

CR =
Z

@S
vRdx

=
Z

S
curl vR � n dS

=
Z

S
curl v � n dS

=
Z

@S
vdx

= C:

In this mathematical sense, the localized �ow captures
the rotation and divergence of the global �ow inside the
chosen region. Of course, the localized �ow does not
capture additional rotation or divergence outside the cho-
sen region. In the moving-vortex-example, the localized

�ow will only be in�uenced by the rotation of the large
vortex inside the chosen region. Any rotation outside that
region will not show up in the localized �ow, so that
the region determines whether the localized �ow gives
a complete or a partial picture of the large vortex. If,
for example, the region is �xed and the area essentially
in�uenced by the vortex moves over time from inside
the region to the outside, the localized �ow will show a
smaller and smaller part of the vortex. In our eyes, this
limitation is obvious to any �uid dynamics researcher or
engineer and will no disturb him. We believe so because
the construction of the localized �ow by separating a
divergence-free potential �ow from the remaining part
uses very well known basic concepts of �uid dynamics.
If one wants to examine the whole moving vortex using
localized �ow one has to choose a region that covers the
whole path of the vortex. As the examples in our paper
show, it even makes sense to choose the whole simulation
domain for computing the localized �ow in many cases.
The draft tube is an example of how the localized �ow
can be used to determine reverse �ow regions in a �ow
with a moving vortex.
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