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Abstract—We present, extend and apply a method to ow past a stationary object, critical points (important
extract the contribution of a subregion of a data set to the for topological analysis) and vortices often do not show
global ow. To isolate this contribution we decompose the yp at all although the ow can be more complicated
ow in thg §ubregion into a potential ow that is.induced than the velocity eld suggests at rst glance. A fast,
by the original ow on the boundary and a localized ow. o cessarily near-constant, component of ow through
The localized ow is obtained by subtracting the potential L . . :

tubes or similar objects can hide the mentioned features

ow from the original ow. Since the potential ow is free | =
of both divergence and rotation the localized ow retains 1" the same way. This is where the geometry comes

the original features and captures the region-specic ow INto play, as the dominant ow most of the time is
that contains the local contribution of the considered sub- strongly in uenced by the geometry. A bent tube is a
domain to the global ow. In the remainder of the paper, simple but intuitive example for this. In cases with such
we describe an implementation on unstructured grids in  dominant ow the analysis of the ow greatly bene ts

both two and three dimensions for steady and unsteady from removing the hiding component and treating the
ow elds. We discuss the application of some widely remaining local component of the ow

used feature extraction methods on the localized ow and The id ted in thi | d th
describe applications like reverse- ow detection using tle € 1deas presented in this paper revolve aroun e

potential ow. Finally, we show that our algorithm is robust ~ notion of localized ow analysis[1], i.e. the analysis

and scalable by applying it to various ow data sets and Of the contribution in a subregion to the global ow of
giving performance gures. a given data set. To this purpose, a so-cajedential

ow is constructed that matches the original eld on the
boundary of the subdomain but is otherwise simple in the
sense that it has vanishing divergence and curl. In other
words, it represents the laminar ow in the subdomain,
|. INTRODUCTION which is induced by the geometry of the domain and

LOW visualization plays an important role duringh€ conditions on its boundary [2]. By subtracting this
Fthe design process of all kinds of objects in sciencgld from the original ow (see Fig. 1), we are left
and industry. Cars, air planes, turbines, motors aMth alocalized owthat is con ned to the subdomain
buildings are only few examples. They are very differeftnder consideration and contains the local contribution to
but for all of them the behavior of ow through or aroundhe global ow. Visualization methods that are based on
them can be crucial for durability and usability. Commoflivergence or rotation of the ow (both local in natdje
to all of these objects is that their geometry has largée unaffected by this approach since the localized ow
in uence on the ow through or around them. Many'etains the original rotation and divergence. Methods
standard ow visualization techniques ignore this fadt@sed on the velocity eld are able to detect features
completely. They only treat the original velocity eldin localized ow which were hidden in the original ow.
or simple derived elds and thus can miss important The method presented here works well for both two-
features. If, for example, the ow is dominated by alimensional and three-dimensional ow elds and is

large near-constant component, as is common in tBéen extensible to unsteady ows. The choice of sub-
region is arbitrary up to the condition that it is a simple
A. Wiebel and G. Scheuermann are with the Image and Signal Pdomain with piecewise smooth boundary. We describe an
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Fig. 1. lllustration of the different components of the ow around the deliag in EDELTA data setLeft: Original ow eld from the
CFD simulation,Middle: Potential ow computed by the original eld's ow normal to the boundamote that the ow is simple but not
constantRight: Localized or region-speci ¢ ow obtained by subtracting the potentialv érom the original eld.

improved version of the algorithm presented in [1] whicQuite similar to what we describe here, our motives
implements the given ideas on unstructured trianguland technique are different. It is our aim to analyze
or tetrahedral meshes using a nite-element approatite localized ow with conventional ow visualization
and extend it for the use with time-dependent eldgechniques, as opposed to making use of the potentials
Although the computation of the potential ow is afor that purpose. Moreover, in spite of the super cial
complicated numerical procedure, our algorithm worksmilarity between the potential ow and the harmonic
well even on large CFD data sets with millions of cellseld h from above, we believe that our approach is

Our work can be seen as having similarities to whaetter suited to the localized analysis of ow since we
others have published before (cf. [3]-[5]), therefore wase specic boundary conditions to guarantee that the
describe some essential differences to the work presenpedential ow contains the part of the ow that does not
here in Section Il as well as other work that is relateariginate in the considered domain. No such condition is
to this paper. In Section lll, we recall the mathematicéinposed orh. Last but not least, the computation of the
concepts that the region-specic ow is based on andotential ow is conceptually simpler than that afand
extend these concepts to t the time-dependent case as only one potential and this only of scalar nature
in Section IV. We give a detailed discussion on thkas to be computed.

usefulness of the region-speci ¢ and potential ow for  concering topological analysis and feature extraction
data set analysis in Section V. The implementation o} vector elds, there is a large body of literature
tr!angular anq tetrahedral gr!ds is the topic of Section Va!_rvailable. Poset al. [6] provides a good overview. Of
Finally, we discuss the application on some examples dBecia| interest in this paper are topological methods as
Section VII. Section VIII concludes on the presenteglaaieq by many authors, e.g. Helman and Hesselink [7],
work. Globus [8], Scheuermanet al. [9], Tricocheet al. [10]
and Theisekt al. [11] to name just a few. We are also
Il. RELATED WORK concerned with more general feature extraction methods,
The notion of localized ow analysis under presersuch as the vortex core line extraction method of Sujudi
vation of the original characteristics of the eld (i.eand Haimes [12] and the region-basegtcriterion by
divergence and rotation) is in part related to woreong and Hussain [13] that we discuss in the context of
published by Polthier and Preuss [3], [4] (in 2D) anthe localized ow. As a fast moving frame of reference
Tonget al.[5] (in 3D). These authors employ the Hodgés a simple example for a dominating ow component
decomposition theorem from vector analysis, stating thaigling vortices, the work of Sahnet al.[14] concerning
any vector eld can be decomposed into three eld@ vortex core extraction method that is independent of the
containing the divergence, rotation and harmonic parfgame of reference is of interest. The method computes
The decomposition is given in terms of potentials for thédge and valley lines of Galilean invariant vortex region

divergence- and rotation-components, guantities, such as the mentionegkcriterion to extract
the vortex core lines. Stegmaiet al. [15] combine the
v =grad u + curl w + h; »-criterion with the method of Banks and Singer [16]

which are computed explicitly. Analysis is then att0 extract Galilean invariant but distinct regions for

tempted by locating features as extremal points of tifafividual vortices.
rst two components. Although these approaches seemThere is some recent work by Laramet al. [17]
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which presents a simple method for the extraction & A Special Neumann Problem
regions of reverse ow (or recirculation). They investi- Let us assume thate is given as the gradient of a
gate data where the main ow should go from negativfﬁnction u: | R (thenvp is calledpotential ow).

to positive x-coordinate and regard regions containing is immediate that

vectors with negativ&-component as reverse ow zones.

Obviously, this idea can be applied to arbitrary main ow curl vp = curlgrad u = 0 on

directions (different fronx, y andz) by evaluating the

dot product of the vectors with the respective directioRequiring thatvp has vanishing divergence, we compute
and testing for negativity. However, for this method the

main ow direction has to be known a priori and it has ~ 0=div vp = divgrad u = u on ;

to be constant all over the dataset. As we will see later

these problems can be circumvented using the potenW cre dta_qotes the L"?‘p'ace operqtor on _scalar func-
ow computed by our method tions. Rewriting Eq. (2) in terms ai, it turns into

n gadu = v.n on@ :

Il "L 0CALIZED FLOW COMPUTATION Hence, forvp :=grad u to ful Il the conditions (1) and

In the following, letv : RY 1 Rd:d = 2:3 pe (2),u mustsolve
a continuous (ow) vector eld. Let RY be an B
open, bounded and connected domain arile outward u = on (3)
normal eld on @ . n gradu =v n on @ 4)

In order to analyze the specic contribution of the
ow in  to the global ow eld, we de ne theregion-
specic ow vg : ! RY by requiring two essential
conditions:

This class of problem is called a Neumann-Laplace
problem foru, and it is uniquely solvable up to a con-
stant. From this construction, we are able to determine
_ _ _ ] _ vp by solving foru. Since we are only interested in
1) itretains the essential behavior of the ow in termgaq y, the constant is essentially factored out and does
of rotation and divergence, i.e. not in uence the result. The region-speci ¢ ow is then
. i given by
div vg =div v and curl vg =curl v on
VR = V grad u:
2) itisisolated from the global ow on the boundary
of the subdomain, i.e. the region-specic ow
through the boundary vanishes:

A unigue solution to (3) and (4) can be obtained by
requiring Z

v n = 0; (5)
VR h =0 on@: @
o - o _ implying that the total ow through the boundary must
The suitability of these conditions is discussed in Motg,nish. This ensures that the right hand side is in the
detai! in Segtion V. The difference of global and regiorbrthogonal complement of the kernel of the Laplacian
specic ow is then given by with pure Neumann boundary conditions. The compati-
bility condition (5) is a-priori ful lled for incompressild
ows (e.g. liquid ow), since by Stokes' theorem
z z
v .n = divv = 0:

Vp = V VR:

Owing to the linearity of divergence and cwk must
satisfy @

In the next section, we detail a modi cation of the

dvvp =0 and curlvp =0 on ; (1) -
Neumann problem for the case of compressible ows.

and we nd that

Ve N=Von on@: 2 B. Compressible Flows

When considering compressible ows, e.g. those aris-
We next look at how the construction ofp can be ing as solutions of the full Navier-Stokes equations, the
achieved by a simple mathematical procedure. compatibility condition (5) does not necessarily hold.
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However, we note that compressible ows satisfy theondition. Letvy andv be two elds interpolated from

continuity equatiof the respective eld above with j. The linear
@ interpolation forv satis es the following equation:
— +div v = 0; (6) .
@t _ i P RY
VR = Vg ¥ j (VR VR):

where > 0 denotes a material density that may vary i
spatially. Based on this, we are able to enhance OHben with the linearity of the divergence
approach from above to guarantee results for steady

compressible ows. We propose a modied Neumann iy v, = div vl + ——
problem in the form )

(div v, div vR)

u=2~0 on (7) and with div vk = div v and div VJ& = div Vi it
n gradu =( v) n on@ : @) follows |
As for steady OWS%FO, the compatibility condition dIV Vg = div v+ j i(dlv vl divv') = div v :

for this system coincides with Eq. (6) and is hence Th iderati hold for th it q
ful lled. Then, vp is again divergence- and curl-free and, € same considerations hoid for the vorticity an
by setting yield curl v = curl v . Thus, as mentioned above,

the rst condition holds for the interpolated elds too.

The second condition requires the potential ow's
it follows component normal to the boundary to be zero. Again,
this condition does not depend on time and ensuring that
it is satis ed for the time steps provided, is suf cient to
Dividing by we nd guarantee that it holds for all instantaneous time steps.
Note that the above considerations also imply that (1)
and (2) hold for elds interpolated between potential
i.e. the region-specic ow is again conned to and elds of given time steps.

VR = Vv gradu

n vk =n (v gradu) =0 on@:

n vk =0 on@;

inherits the characteristics of the original ow. Summarizing this section, we nd that the localized
ow in the time-dependent case is obtained by comput-
IV. EXTENSION TO TIME-DEPENDENTCASE ing the localized ow for the given time steps (as in the

As the notion of localized ow can be formulated withsteady case) and linear interpolation between these time
two purely mathematical conditions (see Sec. llI), it i§t€ps.
easily extended to unsteady ow.

In the steady case the rst condition requires that th& Unsteady Compressible Flows

localized ow exhibits the same divergence and vorticity For the steady case, we gave a modied Neumann
as the original ow. Lifting this condition to the unsteady roblem to handle compressible ows in section llI-

case_it says that the Iocalized_ ow has to _have the Unfortunately we are not able to give a modi ed

mentioned dlverge_nce and vorticity all the_ t_|me. ASNeumann problem for all unsteady ows. This is due to
SOW’ tr:je contq_puta_tlon of dlverg?r?_ce_ antd vortmnyﬂgiot r][%e fact that her%t does not necessarily vanish and thus
epend on tme n any way, this Just means tha W?e continuity equation (6) does not necessarily coincide
condition from the steady case has to be ful lled fo{}vith the compatibility condition (5)

evliry mst(;a_nta?eOUfhtlr?ﬁ steg Ofl the u_rgjste?dy Ef[ld' However, compressibility does not always mean that
roceeding from the theoretical considerations 1o prags , yiiion (5) is not ful lled. It is still possible to check

t!cal CFD datasgts, we nd that only few instantaneo hether the condition is ful lled directly by evaluating
time s_teps are given. The elds between these steps h?P{S boundary integral. This check can be performed
tp be mterpolate_d. Fortunately, the following co_n5|dere|1(-)r the original Neumann problem or for the modi ed
tions show that if we have two time steps ful lling theNeumann problem. If the condition is ful lled for one

rst .condi'Fion for the localized ow all eId's.obtained of the systems one just solves this system to get the

by Imeailr mterpjolatlon fulll the same condltlon._ potential for the divergence and vorticity-free ow.

. Let Vi a?dvg ?e ;Wr? quIs_ thlat, I':jogether Wr:th two Additionally, in our experiments, we found that our

time steps/' andv! of the original eld, satisfy the rst implementation (which is described later in this paper)
2We note that Wiebekt al. [1] in the same context erroneouslylS Very tolerant against small deviations from condition

refer to Eq. (6) as the conservation of momentum law. (5). The solutions are inuenced only marginally by
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small deviations. However, we are working on a modi ed
scheme for compressible unsteady ow with strongly
time-varying density.

V. INTERPRETATION OF THEFIELDS OF THE
LOCALIZATION PROCESS

So far we have only considered the mathematical
construction of the region-speci ¢ ow. Along the way,
some conditions were imposed to guarantee solvability
of the problem. We will now dedicate some thoughts
as to how these conditions affect applicability of our
method to the general localized analysis of ows. We o _
will also discuss the interpretation and use of the?) original ow b) potential ow
elds introduced in the previous sections. More dataset-
speci ¢ results and application examples are given in
Section VII.

A. Scalar Potential

The rst eld appearing during the localization pro-
cess is the scalar potential obtained as solution of the
Neumann problem. For the Hodge decompaosition Polth-
ier et al. [4] have used features in the scalar potential to
identify features of the ow eld. We will not go into
further detail about the scalar potential as all interestin
featu_res als_o appear _in the potential ow which, asc) average ow and d) localized ow
mentioned, is the gradient of the scalar potential. Note

. . ., original ow with
additionally that all extrema of the scalar eld lie on its removed average ow
boundary.

B. Potential Flow

From a feature oriented point of view the potential
ow seems to be uninteresting. It has vanishing diver-
gence and rotation and thus is irrotational and free of
sinks and sources (saddles are possible, see the close-up
in Fig. 2b). It is very simple, in fact it is theimplest
ow (minimum of total kinetic energy, see [2]) matching
the original in ow and out ow on the boundary of the
considered region. Most of its behavior is determined by
the geometry of the region, the rest is determined by th€) reverse ow region f) streamline in
Neumann boundary conditions. and strength reverse ow region

These properties, however, make it seem uninteresting
only at rst glance. The in uence of the geometry offig. 2. Imagea) shows streamlines of the ow in a draft tube of a
the region is very important. Engineers knowing theater turbine. Image) shows how the potential ow follows the turn
geomety of a fegion are able to predict the potentge Lbe 2 S ez b o e vt ek ener v
ow in the region with little effort. The potential ow of constant average eld. As the constant ow does not follow the
shows how the ow would pass a region or object ifube, the ow with subtracted average often leads directly into the
viscosity and wall friction were negligible [2]. Thus jtwalls of the tube. The localized ow respects the boundary and does

: : - _not lead into walls. In image) a volume rendering shows locations
can be regarded as the most natural main ow dlreCtloglﬁd strength of reverse ow regions in the tube. Imdgshows an

As alluded to in the related work section, this propertyosurface that represents the border of regions with reverse ow of
can be used to detect regions of reverse ow. Treating thaother time step. A streamline in the original ow shows the reverse

direction suggested by the potential ow as main ow°W-
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direction we compute the dot product of the normalizetiat one can infer the potential ow mainly from the
original ow with the normalized potential ow. This geometry of the region. Thus deviations from this ow
yields a scalar value at every position which indicatese what is interesting in a ow. For the detection of
whether the original ow has a component in (positivéhese deviations the magnitude of the localized ow or
value) or against (negative value) the main ow directiorbetter the ratio of the magnitude of the localized and
Then regions of reverse ow are easily identied ashe original ow are considered. For two-dimensional
regions of negative value. Their borders can be visualizenivs a simple color mapping of this ratio can give a
by isosurfaces of zero isovalue (see Figs. 2f and 4). rst overview. Isosurfaces and direct volume rendering
can be used for the same purpose when treating three-
dimensional ows (Figs. VII-A and 2).

Concerning the in uence of the frame of reference
From a purely physical point of view it does not seeron ow analysis, the region-specic ow delivers a
feasible at rst glance to manipulate a ow eld in ordernatural abstraction. For the common case that features
to further its analysis. It is known practice, howevein the ow are obscured by a dominating constant ow,
to decompose ow elds (see e.g. [2]) or to subtracthe in uence of the latter is “caught” in the boundary
a constant vector eld to reveal structures that are nebnditions of the potential ow, even if it is non-constant.
visible in the original eld (heuristically, the averagelt is subsequently subtracted from the original ow and

(boundary) ow is subtracted). The latter is justi ed bydoes not show up in the region-speci ¢ ow. By this, for
the principle of Galilean invariance which states that thie case of topological methods, critical points such as
properties of ow have to be the same for a constantiinks, sources and spirals relating to extremal divergence
moving and for a resting observer. However, in mosind vorticity are much more likely to occur than in the
cases, this approach is not appropriate as it does o@ijinal ow, enabling the use of such methods in a
preserve boundary conditions. For example, in the owroader context of ow analysis.

around a stationary object (see Fig. 3) or through aFigure 3 exemplies some of the previous consid-
channel (see Fig. 2), subtraction of a constant vector elgtations. The 2D vector eld shown represents the in-
yields streamlines that lead into the boundary surfaegsmpressible ow passing around a cylinder. On the
Since the boundary conditions are an integral part of ta@wnstream side of the cylinder, the well knowaran
region-speci ¢ ow (via condition (2)), it does not suffer vortex street should develop. However, it cannot be
these problems. observed in the original ow. Removing the numeri-

Furthermore, both vorticity and divergence of the origzally obtained average ow reveals some but not all
inal ow are preserved in the region-speci ¢ approachof the features present and yields a strong diagonal
Therefore, feature de nitions that build on these quantiew component that has no physical interpretation. The
ties and consequently algorithms that extract these fe@nstructed potential ow is very uniform except in
tures are naturally unaffected. Recently, Saetlal. [18] the vicinity of the cylinder where it re ects the ow
presented analysis and visualization of three-dimensio@ound it. Subtracting the potential ow from the original
vector elds based on vorticity and vorticity lines. While ow reveals all the downstream vortical structures by
the streamlines of the velocity are naturally differeni topological analysis. In this example, subtracting the
in the region-specic ow, the invariance of vorticity correct downstream component (a multiple ®f =
lines and hence the non-changing vorticity transport {n;0)") would also reveal all vortical structures and
the ow imply that all vortical structures are kept. Thisavoid the uninterpretable diagonal component. However,
con rms our approach to be meaningful and to contai practical applications (see Sec. VII-B) the original
the information for the important features present ilownstream component is often not known. In these
the original eld. In summary, the region-specic ow cases the numerically obtained average vector was the
contains exactly the local domain-specic contributiomest approximation up to now.
to the global ow.

As the localized ow is the difference of the original
and the potential ow it represents the deviation of
particle in the original ow from the ow induced by From the mathematics of solving the special Neumann
the geometry. Consequently its magnitude is large whermoblem 3, it is only required that the subdomain
the in uence of wall friction and viscosity are large ands open, bounded and connected. These requirements
it is small where the original ow is nearly equal toare easily ful lled and do not constrain the choice of
the potential ow, i.e. laminar. We already mentionedegion much. Regarding the numerical schemes we apply

C. Region-speci ¢ Flow

D. Choice of Localization Region
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We now recall that the vorticity can be de ned with the
non-diagonal elements of the anti-symmetric part of the
Jacobian] as follows:

culv=r v=( 21, o2 10): 9)
a) original ow b) original ow minus Since is antisymmetric, all its diagonal elements are
average ow zero. Due to (9) and the antisymmetry all other elements

are determined by the curl of. As the curl of the
original and the region-specic ow are equal now,
is also equal for both ows. Unfortunatel$ is only the
same up to the sum of the diagonal elements as can be
seen by
tr(J)=tr(S)=div v
c) potential ow d) original ow minus
potential ow and the fact that the divergence of the original and the
Fig. 3. Comparison of different elds obtained from cylinder data s,e,r'[(aglon'SpeCI ¢ ow are equal. However, this reasoning

with Karman vortex streeta) Streamlines in the original ow. Only at least yields a strong similarity between for the
sinusoidal line structures adumbrate the vortidgsThree vortices original and the localized ow. We, in fact, observed

revealed by removing average ow) Potential ow induced by the this similarity in all our experiments, see for example

ow on the boundary of the considered region. Note how the o . .
attaches to the cylinder and does not seem to cross it as it Woulzi\{B@ left image of Fig. 4 for the EDELTA data set.

the case for constant average od) Subtracting the potential ow
reveals all ve vortices present in the considered region by use of VI

topology. . IMPLEMENTATION
In the following, we will revisit the construction of
the region-speci ¢ ow from Section Il and show how

in the application of our ideas in the next section can be achieved for discrete data sets.
a convex domain with piecewise smooth boundary is\\e assume that the discrete ow eld is given on
greatly bene cial in terms of convergence. the vertices of a simplicial (triangular or tetrahedral)

Choosing a localization region appropriately as inp@tﬁd, a form taken by many modern CFD data sets. We
to the algorithm is the responsibility of the user. Ofterhote that the derivation of the potential ow is basically
an a-priori region of special interest can be a goqfdependent of spatial dimension. In an implementation,
choice and the engineers often know what is or shoyldyever, differences show up since the method works on
be interesting in their data sets. For the applicatioRgangles in the two-dimensional case and on tetrahedra
described in the previous subsection (reverse ow regiqR three dimensions. By formulation in the context of

detection and extraction of regions with large in uencéjte element methods, a unied numerical formalism
of friction and viscosity) the whole dataset is chosen fei3n pe achieved nevertheless.

computation of the region-specic ow. The region is easily discretized as a connected
subset of the original grid simplices. The Neumann
E. In uence of Localization on »-criterion problem is then discretized on this set by the application

To support our statement that the localized ow retair@f @ Galerkin-type nite element method. The basic idea
the essential features of the original ow, we discus§ Simple: by discretizingi in a nodal basid ;g that
the in uence of the localization on the,-criterion in has one basis function for every grid point, Eqns. (3)
this section. The ,-criterion [13], as mentioned before @nd (4) can be written as a linear system
is_a method for detectin_g vortex core regions. By_ this Au = f A 2R" " andu:f 2 R"; (10)
criterion a vortex core is de ned as set of positions
with low “modi ed” pressure, which means a set ofwhere A is symmetric and sparse (cf. [19] for a very
positions where a certain matr® + 2 derived from concise presentation of the general procedure).
the local velocity gradiend = r v has two negative The solution of this system is slightly more com-
eigenvalues. The matricéS and are the symmetric plicated than in the usual nite element case, owing
and antisymmetric part of : to the fact thatA is not positive de nite but positive

~ 1 T 1 T semide nite. This corresponds to the fact that the orig-
J=5+= S0 +3I)+50 J ) inal problem (3) and (4) is only determined up to a



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 1, NO. 8, AUGUST 2002 8

constant. The compatibility condition (5) translates to emphasis on topological methods and feature extraction
X _ schemes, since we believe that this class of methods is
fi =0 most bene tted by the localized ow approach.

implying thatf must be orthogonal to the kernel af If e presented results were computed on a standard
this discrete condition is ful lled exactly, the commonlyPC Workstation with 3GB of RAM. Performance gures
used Conjugate Gradients (CG) scheme can be emplof&l dataset sizes are given in Table .

to solve the singular system (10). Owing to inexactness

in numerical integration, this is extremely dif cult to A pelta Wing Con gurations

ensure in practice, resulting in instability and extremely _ )

bad performance of the iterative scheme. Bochev andIn the fol.lowmg We examine two datasets., both result-
Lehoucq [20] give a possible solution to this class Jp9 from S|mulat|on_s of alzlogslrzocfp: adsTlrE)géT_felta—
problems: by reformulating the Neumann problem 4¥pe wing con guration (calle ) an A. .

a saddle point problem, a regularization approach Cglqth data_sets were computed in the conteixt of numerical
be employed to achieve stability and good convergen%eese"’?mh _|-nt_o vortex_breakdown by Markustten at thg
properties. Essentially, this results in a modied C LR m_Gottln_gen. Given on large unst_ructured adaptive-
scheme that ensures that successive iterates remain B?Lﬁplu,t'on grids, they pr_esent a serious challenge for
side the kernel oA. We found this approach both easil;}”sual'zat'on techniques in general owing to both per-
implemented and very stable formance issues and numerical stability problems. The

Having obtained the discrete potentia) taking its d?tthaseti t?]re qwt;a _Iargelt_wlltht. 11Mtresp. 1?.M _tcells.
gradient gives a cell-wise constant vector eld. We uﬁé ough they contain muttipie ime steps, we fimit our

weighted averaging of neighboring simplices to compuEé'ta;:ysc‘;stto stlngle r?'g]"? sllctes Irt\) thlicpl)aper .an? ?Ith?ugh
the vector eld values of/p on the vertices of the grid. 0 atasets exhibit vortex: breakdown in iater ime

Finally, v is obtained by subtractinge from v at the steps, we also c9n5|der tw_ne steps that _do not show it.
grid vertices 1) EDELTA: Figure 1 gives an overview of the lo-

A is best represented in a sparse storage format. z?éiza_ltion process fpr this dataset. Th? origina_l ow
allows us to treat grids with millions of cells without re—( eft |mage). '3 do[jnltr:atehd by_ a I?Lge (:jn magn:;yde)
sorting to out-of-core or cluster techniques which mak&§MPponent induced by the original boundary condition.

the implementation straightforward. Computational corrﬁ2 olc_)sm_g a EOX arou_n(IJI the W'lc?c?l g_eometry for the
plexity is two-fold: the assembly of the system mathix ocalization, the potential ow (middle image) captures

is relatively costly since the complexity is linear in théhIS component and essentially corresponds to a laminar

number of grid cells. The complexity of the successiv8"” arqund j[he wing. The region-specic ow looks
matrix inversion is then a function of the number of grid"t€"esting (right image). The primary vortical structures

points and the smallest cell in-circle radius. The numb8&f® cl_early V'S'ble (the ow component along the vortex
of iterations of the CG scheme can be signi cantl _xes is essentially removed), as is the bow wave at the

reduced by application of preconditioning. Section vIIHP of the wing. _
Next, we look at a time step that shows the vortex

D and Table | provide details on the performance of our « | H ) h ically. th
implementation for a number of data sets. breakdown bubble above the wing. Theoretically, the

Remark: As the matrix depends only on the griopreakdown bubble mainly consists of a recirculation zone

and its connectivity, the same matrix can be used fmat IS ;hlelded by two s_addle pomtg forcing the ow
all time steps in the unsteady case. Computing tﬁ\éound it (for a more detailed exp_osmon, see [22]). F!g-
matrix once and storing it for reuse avoids repeatéﬁe 5 shows the results of a straightforward application

costly computations and improves the performance Bff the Sujudi-Haimes algorithm to a _sphencal region
the localization procedure dramatically. around the breakdown bubble. The original vortex core

is visible together with the breakdown saddle points (left
image). The strongly curved region is an indication of
the recirculation. However, the recirculation core is not
In this section we demonstrate the proposed teatieanly extracted. The right image shows an identical
nigues and show how they can help in furthering vivisualization for the corresponding region-speci c ow.
sualization on several application datasets. All data s&hile the critical points are unchanged, the recirculation
except theHART Il dataset (which contains measures cleanly identied as a closed vortex core winding
data) result from CFD simulations conducted in actuatound the original vortex. We extract exactly the same
application research. In our analysis, we put a sligbtructures as others working on this dataset [23] with

VII. RESULTS AND EXAMPLES
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Fig. 4. Left: Vortex core lines and volume rendering of the-criterion, both computed for the localized ow around the delta wing of
the EDELTA data set. The vortex core lines were extracted using the algodfhSujudi and Haimes in the parallel vectors version of
Peikert and Roth [21]. Note how the volume rendering indicates evenett@ndary and tertiary vortices in the localized oMiddle:
Zero-isosurface (red) of dot product between original and potewatiaindicating reverse ow regions. Streamlines in the image and the
close-up show that the isosurfaces identify the recirculation in the voreaktown bubblesRight: Volume rendering of the ratio of the
velocity magnitude of original and localized ow. The opacity encodes #t@ rwhile the color encodes the sign (positive blue, negative
pink) of (v=kvk) (ve=kvpKk). In this representation we can see both, the recirculation zones andtém ekthe vortices.

different methods. Essentially, the region-specic ow
is much closer to an analytic breakdown bubble model,
allowing for a clean identi cation of this phenomenon
in this dataset.

To detect the recirculation in the same time step
as above, but assuming not to know their location in
advance, we used the potential ow as mentioned in
Section V-B. The results can be seen in the middle and
right image of Figure 4. The middle image shows a zero-
isosurface Qf the dot p,rOdUCt of the normalized (,)ngmia—l . 5. Close-up of the vortex breakdown bubble. In the original
and normalized potential ow. It encloses the regions oy, the main vortex core is strongly curved and distorted (left). In
reverse ow. The right image shows a volume rendetinghe region-specic ow, the recirculation type nature of the bubble
where the color represents the sign of the dot produ'@t_plearly io_Ienti_ed by the closed vortex core (_righ_t image). Critical
The opacity, however, represents the deviation of tﬁ%’nts are in this case unaffected by the localization.
original ow from the potential ow, i.e. the ratio of the
magnitudes of original and localized ow. Both images
show the recirculation zones quite clear. The right image
additionally gives an impression of the deviation and thuserlaid with its topological graph. The high number of
of the in uence of friction and viscosity. Both are largecritical points is a result of the numerically unstable shea
where the main vortices are located. ow computation that involves numerical derivatives.

2) TDELTA: Although this simulation is quite similar Some separatrices are indicative of separation/attachment
to the EDELTA con guration, its spatial resolution is behavior, however, the picture is incomplete. Using the
higher. This is especially true for the region close tgntire wing as localization region, the resulting region-
the wing surface, making an analysis of the shear str&®eci ¢ ow shows all the features as part of its topology
eld feasible. One is especially interested in separatidfiddle image). Since the subtracted potential ow is
and attachment lines, whose extraction still poses majgy smooth, the localized shear ow does still contain
problems for modern datasets. In analogy to vortex cos@ni cant amounts of numerical noise. In spite of this,
lines, separation and attachment lines can appear as gi¢textracted separation and attachment lines are of a
of the topological skeleton of the shear ow. Figure @€ry good quality and match the original shear ow
(left) shows a LIC image of the original shear ow,properties (right image). In analogy to the vortex cores

in the EDELTA dataset (cf. [1]), by the use of region-

3Because of the complexity of the CFD grids we use the techniqu%@ef:i c ow, it is possible to _EXtraCt important features
introduced by Tricochet al. [23]. easily as part of the topological graph.
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Fig. 6. Topology of the surface shear stress in TlREELTA dataset. The topology of the original shear ow captures some featouess
incomplete (left). All separation and attachment lines appear in the topabthe localized shear ow (middle). All images also show a
LIC representation of the original shear ow. A close-up reveals depematch between original shear ow and localized features (right).

B. HART Il

TheHART Il dataset does not result from a simulation.
It consists of measurements of a helicopter rotor blade
wake (cf. [24]), aiming at improved knowledge about
the evolution of the vortices generated by the wake and
reducing the rotor noise which is created by interaction
of the wake and a following blade hitting the wake.
PIV (Particle Image Velocimetry) was used to obtaifig- 7. HART Il data set consisting of PIV measurements of

instantaneous ow eld data in a large observation are|3£Iicopter rotor blade wake. Left image shows original measured ow
in a plane cutting through the wake. The wake vortices of the passing

and in a smaller close-up view of the vortex core. BMades are not visible. On the right, the topology of the region-speci c
nature, PIV produces measurements on 2D slices of tbe reveals the vortices present in the correct frame of reference.
three-dimensional ow eld. We consider one such slice

with 8K vertices that cuts through the wake and thus the

wake vortices of one rotor blade. C. Draft Tube

This type of dataset is of special interest since the This dataset represents the draft tube of a Francis
correct frame of reference is unclear: while the observiirbine, in which the runner is spinning in the inlet
is static, the rotor blades are moving. From the left imageut of the turbine (see Fig. 2a). The runner (at the
of Fig. 7, showing the original measured data, no vortictdp) induces a spinning motion in the water, which
structure can be inferred. Without making any assumigaves the turbine (bottom) after passing through the
tions about the correct frame of reference and using therved tube. We essentially used this dataset to illustrate
entire measurement domain as localization region, th unsuitability of the average (boundary) ow in the
structures of primary interest are easily extracted frolacalization of such datasets.
the region-speci c ow using simple topological tools. From Figure 2 it is obvious that the average ow
The two wake vortices present in the ow are clearlyails to approximate the overall boundary ow due to
visible in the rightimage. The stronger vortex stems frothe strong curved nature of the domain (image c). The
the last passing blade while the origin of the smallgrotential ow, however, follows the curved shape of the
vortex is the tip of a blade passing earlier. The latténbe (image b). Subtracting the average ow and the
vortex is smaller due to two reasons: it is older and thp®tential ow from the original ow (images ¢ and d),
decaying and it was hit by the last passing blade (thige observe that the localized ow does not violate the
disturbs its vortical nature). The goal of the engineerspundary condition on the tube wall, as opposed to the
which is to determine the position of the wake vorticeswerage-reduced ow. In summary, the region-specic
is easily achieved with the region-specic ow. ow shows a more natural behavior.
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For this dataset the detection of reverse ow as pr@and subtracting it from the original eld. We have ex-
posed by Larameet al. [17] must fail because the maintended this method to unsteady ow elds. Furthermore,
ow direction turns by 90 degrees while passing througive have given applications of components (localized
the tube. In contrast, our method using the dot productafd potential) of the original ow. While the potential
original and potential ow detects the reverse ow easilyow can be used to detect reverse ow regions, the
(Fig. 2f). The volume rendering in Fig. 2e even allowmagnitude of the localized ow can reveal regions where
to get an impression of how strong the ow directiorthe in uence of friction dominates the ow.
differs from the main ow direction. The difference, i.e. The localization retains the original features of the
the negative dot product of the normalized vectors adw and is thus ready for the application of many
original and potential ow, increases from yellow to redstandard methods for feature and topology analysis. We
The bluish area shows the space surrounding the revedseailed this by examining the in uence of the local-
ow for completeness. ization on topology, vortex core line extraction and the

o-criterion. We discussed the differential equation that
has to be solved to obtain the potential ow elds and
described our implementation. Applied to large data sets
from CFD simulations and to a measurement data set
our method proved to be scalable and robust.

Future work may include the following research av-
enues:

Having the time-dependent extension of the local-

ized ow it may be interesting to track reverse ow

regions over time to learn more about their creation
Fig. 8. Three snapshots of an animation showing the movement 514 evolution. Additionally, the interpretation of
of reverse ow in tube dataset. Notice the movement and split of th i in the | lized T i
the reverse ow region in the main vortex as long thin parts of the pa_ Ines m_ e loca 'Z_e Ow IS an open question
isosurface. which we will address in the the future.

As solving for the potential includes handling

The extension of the localized ow approach to un-  of very large matrices we intend to implement a

steady ows allows us to visualize the evolution of the  parallel solver to reduce the computation time.

reverse ow regions as shown in Figure 8.
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APPENDIX |

VIII. C ONCLUSION AND OUTLOOK As mentioned before, one reviewer raised concerns
We have presented a method to isolate the ow iabout the notion of rotation and divergence beincal
subdomains of ow data sets from the ow in the neighin nature. We give his example problem here, as we think
borhood by constructing an irrotational and divergenc#iat discussing it may yield deeper insight in the idea of
free eld from the ow at the boundary of the subdomairocalized ow.
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| Region | Dimension| # Simplicial Cells| # Vertices| Computation Time in sed.
Box around cylinder 2D 4.7 K 4.8 K 0.66
HART Il 2D 16.6 K 8.5 K 0.49
TDELTA (wing) 2D 156K 81K 10.2
Ball 3D 202.6 K 36.5 K 7.37
Box in furnace chamber 3D 540.0 K| 964.4 K 22.03
Ball with hole 3D 1.1 M 04 M 119.09
Draft Tube 3D 49 M 0.9 M 322.07
ICE train 3D 6.2 M 1.1 M 381.16
EDELTA (box) 3D 17.3 M 3.0M 1386.07
TDELTA (entire) 3D 25.8 M 45 M 3403.10

TABLE |

PERFORMANCE FIGURES FOR LOCALIZED FLOW PROCEDURE OF DIFFERIE DATA SETS

The reviewer stated that a slow moving large vortew will only be in uenced by the rotation of the large
would provide a counter-example to the locality arguortex inside the chosen region. Any rotation outside that
ment (especially for rotation). region will not show up in the localized ow, so that

For the discussion of his problem, at rst it should b¢he region determines whether the localized ow gives
noted that the mathematical de nition of divergence aral complete or a partial picture of the large vortex. If,
rotation url) is local in nature and that this is what wdor example, the region is xed and the area essentially
refer to in the whole paper. We know that there exists uenced by the vortex moves over time from inside
vorticity transport in ows and thus the rotation carthe region to the outside, the localized ow will show a
change by global in uences. However, as we will deta#maller and smaller part of the vortex. In our eyes, this
in the following, we do not believe that this in uencedimitation is obvious to any uid dynamics researcher or
the soundness of our method for the moving vortex amdgineer and will no disturb him. We believe so because
other problems. the construction of the localized ow by separating a

Rotation and divergence of the region-specic owdivergence-free potential ow from the remaining part
Vg are identical to the original ow inside the domain uses very well known basic concepts of uid dynamics.

in the sense of the mathematical de nition. This i¢f one wants to examine the whole moving vortex using
condition (1) in section Il and the essence of the wholecalized ow one has to choose a region that covers the
construction. It follows by Stokes' theorem that e.g. thehole path of the vortex. As the examples in our paper
circulation around the boundary curve of any surfachow, it even makes sense to choose the whole simulation

inside also coincides: domain for computing the localized ow in many cases.
The draft tube is an example of how the localized ow
Z can be used to determine reverse ow regions in a ow
Cr = VR dx with a moving vortex
z@s
= curl vk n dS
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