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Abstract.

Barrier trees consisting of local minima and their connecting saddle points imply a

natural coarse-graining for the description of the energy landscape of RNA secondary

structures. Here we show that, based on this approach, it is possible to predict

the folding behavior of RNA molecules by numerical integration. Comparison with

stochastic folding simulations shows reasonable agreement of the resulting folding

dynamics and a drastic increase in computational efficiency that makes it possible

to investigate the folding dynamics of RNA of at least tRNA size. Our approach is

readily applicable to bistable RNA molecules and promises to facilitate studies on the

dynamic behavior of RNA switches.
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1. Introduction

The comprehensive understanding of the folding process of biopolymers such as proteins

and nucleic acids is one of the core issues in structural biology. It seems fair to say

that Molecular Mechanics, despite all the progress in recent years [6, 33], will for the

foreseeable future remain incapable of predicting, say, the folding pathway of a globular

protein starting from a random coil state all the way to its (unknown) native state.

Obviously, such a simulation would solve the protein folding problem.

In contrast to protein folding, the secondary structures of nucleic acids provide a

level of description that is sufficient to understand the thermodynamics and kinetics

of RNA folding [8]. We show here that folding pathways of RNA molecules at least

the size of tRNAs can be computed for arbitrarily long time-scales within the secondary

structure framework. To this end we exploit the fact that RNA secondary structures can

be computed exactly with efficient polynomial algorithms, a fact that allows a detailed

computational analysis of the conformational energy landscape.

A landscape perspective was used with some success also in theoretical work on

protein folding [11,27,29], but a direct computational analysis of the landscapes of real

molecules is possible only for very short peptides, see e.g. the review of Klepeis [18]. A

master-equation approach similar to ours has been reported in [28] for lattice proteins,

but in spite of the drastic simplification of the lattice model it is still computationally

harder than the RNA case.

A thorough analysis of RNA folding dynamics is a necessary prerequisite toward

understanding the functionality of a variety of small RNA molecules. It has been

shown repeatedly that alternative conformations of the same RNA sequence can perform

completely different functions, e.g. [2, 30, 37]. SV11, for instance, is a relatively small

molecule that is replicated by Qβ replicase. It exists in two major conformations, a

meta-stable multi-component structure and a rod-like conformation, constituting the

native state, separated by a huge energy barrier. While the meta-stable conformation

is a template for Qβ replicase, the ground state is not. By melting and rapid quenching

the molecule can be re-converted from the inactive stable to the active meta-stable

form [45].

In recent years dynamical aspects of RNA structure formation, including transitions

at the level of RNA secondary structure, have received increasing attention, because

they can play a crucial role for the understanding of the biological function of RNA.

It has been shown for a number of natural RNAs that the formation of alternative or

metastable conformations are well-defined steps in their folding pathways. These folding

intermediates determine the biological function of the molecule.

The translation of the four genes encoded on the genomic RNA of the bacteriophage

MS2 is regulated by the secondary structure transition of the 5’ untranslated leader

sequence from a metastable hairpin to a stable cloverleaf structure [34]. While the

expression of the lysis and replicase genes is coupled to the expression of the coat protein

in the full-length RNA, the maturation gene, coding for the A-protein needed by the
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virion for the attachment to E. coli, is unaccessible to the ribosome due to the cloverleaf

structure of the leader sequence. During transcription of the viral RNA the 5’-end of

the leader sequence is trapped in a metastable hairpin allowing the ribosome to access

the A-protein gene. After some time the hairpin is disrupted in favor of the stable

cloverleaf, thereby silencing the A-protein gene expression. This secondary structure

switch precisely controls the amount of A-protein translated from the MS2 genomic

RNA.

The Hok/Sok system of plasmid R1 from E. coli is another prominent example

for the regulation of gene expression via an intricate cascade of secondary structural

rearrangements. The Hok/Sok system mediates plasmid maintenance by expressing

the Hok toxin which kills plasmid-free segregates. The plasmid encodes for a highly

stable mRNA, which is translated to the Hok toxin if the mRNA is in its activated

conformation, and a labile anti-sense RNA (Sok) which act as an antidote by binding to

the activated hok mRNA, leading to rapid degradation of the resulting duplex. The full-

length hok mRNA forms a pool of inactive mRNAs. In time, however, the hok mRNA

gets processed resulting in the truncation of the 3’-end, which triggers a refolding of

the mRNA into the active conformation. Then both locations, the Hok gene and the

Sok binding site are accessible. If the plasmid was lost, the pool of the antidote Sok is

depleted, since the hok mRNA is considerably more stable then the sok RNA inducing

the killing of the cell. For recent reviews on biologically functional RNA switches we

refer to [4] and [24].

2. The Energy Landscape of RNA Molecules

RNA secondary structures can be decomposed uniquely into a set of “loops” of different

types: stacked base pairs, bulges, interior loops, and multi-branched loops. The standard

energy model [21] describes the energy of an RNA secondary structure as a sum of

sequence-dependent contributions for each loop. Dynamic programming algorithms

are known to exactly and efficiently compute the minimum free energy structure [48],

the base pairing probability matrix [22], the density of states [7], certain sub-optimal

structures [47], or all structures with an energy below a threshold value [44]. A suite of

these algorithms is implemented in the Vienna RNA Package which forms the basis for

the computations reported here [14, 15].

Within the framework of RNA secondary structures we can understand the process

of folding as a time-series of secondary structures such that the elementary transitions

are the opening or closing of a single base pair. This idea is implemented in the program

kinfold [9], which allows simulations of RNA folding trajectories for macroscopic time

scales. The simulated annealing approach to secondary structure formation used in [36]

is based on the same idea. Other methods to simulate folding dynamics typically use

formation and deletion of helices as the move set [13, 20, 23], but this requires ad hoc

assumptions about the rates. The paRNAss [40] program tries to predict RNA switches

by clustering suboptimal structures by structural similarity and a crude measure of
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the energy barrier between the clusters. Here we undertake a much more detailed

investigation of the energy landscape.

Given an RNA sequence s, let X denote the set of possible secondary structures

that can be formed from s satisfying the pairing logic of RNA, i.e., considering only

Watson-Crick (GC, AU) and wobble (GU) pairs. The move-set M (e.g. opening and

closing of base pairs) and the energy function E define a landscape on X that can be

seen as a coarse grained (discrete) version of the potential energy surfaces used e.g. in

the MD simulations.

Within the framework of the folding landscape we can meaningfully speak of local

minima or metastable states, their basins of attraction, and the saddle points separating

them. Formally, a secondary structure x ∈ X is a local minimum of E if E(x) ≤ E(y) for

all its neighbors, (x, y) ∈ M. A gradient walk is defined as follows: starting from x ∈ X

we move to its neighbor y with minimal energy if E(y) < E(x). If the minimum energy

neighbor y of x is not uniquely defined we use a deterministic rule to break the tie, for

instance, by choosing the structure that comes lexicographically first. The step from

x to y = γ(x) is repeated until we reach a local minimum where the walk terminates,

γ(x) = x. The local minima are therefore the attractors of the map γ : X → X and

each x ∈ X is mapped to a unique local minimum z = γ∞(x) = γt(x) by a finite

number t of applications of γ. The basin of attraction of a local minimum z, B(z),

consists of all secondary structures that are mapped to it by the gradient walk, i.e.

B(z) = {x ∈ X|γ∞(x) = z}. Below we will need the (trivial) fact that these “gradient

basins” of the local minima form a partition of X.

Let us now turn to the transitions between local minima. The energy of the lowest

saddle point separating two local minima x and y is

E[x, y] = min
p∈Pxy

max
z∈p

E(z) (1)

where Pxy is the set of all paths p connecting x and y by a series of subsequent moves.

The saddle-point energy E[ . , . ] is an ultra-metric distance measure on the set of local

minima, see e.g. [35].

In the simplest case the energy function is non-degenerate, i.e., f(x) = f(y) implies

x = y. Then there is a unique saddle point s = s(x, y) connecting x and y characterized

by E(s) = E[x, y]. This definition of a saddle point is more restrictive than in differential

geometry where saddles are not required to separate local optima [39]. For each saddle

point s there exists a unique collection of configurations V(s) that can be reached

from s by a path along which the energy never exceeds E(s). In other words, the

configurations in V(s) are mutually connected by paths that never go higher than E(s).

This property warrants to call V(s) the valley below the saddle s. Furthermore, suppose

that E(s) < E(s′). Then there are two possibilities: if s ∈ V(s′) then V(s) ⊆ V(s′), i.e.,

the valley of s is a “sub-valley” of V(s′), or s /∈ V(s′) in which case V(s)∩V(s′) = ∅, i.e.,

the valleys are disjoint. This property arranges the local minima and the saddle points

in a unique hierarchical structure which is conveniently represented as a tree, termed

barrier tree (see Fig. 1a). Since saddle points separate local optima, each valley V(s)
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contains (in the non-degenerate case at least two) local minima z1, . . . , zk. Conversely,

V(s) ⊆
⋃

k B(zk), i.e., the valley of s is contained in the union of the basins of attraction

of the metastable states “below” s. The metastable states therefore form the tips (or

leafs) of the barrier tree. In the case of degenerate landscapes an analogous construction

is possible when certain saddle points with the same energy are collected into equivalence

classes. For the mathematical details we refer to [10].

The exact calculation of the barrier tree for discrete systems is a highly challenging

computational problem and only recently some progress in that direction has been

achieved. Even for very small system sizes a simple-minded exhaustive search approach

to evaluating Eq. (1) would be hopeless as one must calculate all paths connecting

all pairs of minima. In fact, the exact evaluation of these paths was qualified as

“desperately hard” in a bold earlier study of the energy barriers of the SK model [25], see

also [19]. Instead, the program package barriers‖ constructs the barrier tree directly

from an energy sorted list of all configurations [9]. Starting with the lowest energy

configurations, barriers explicitly builds the valleys V(s) and subtrees by checking

for each configuration whether it (a) is a local minimum, (b) uniquely belongs to the

basin of a local minimum that was encountered earlier in the list, or (c) “merges” two

or more basins, i.e., whether it is a saddle point. In contrast, methods for exploring

the continuous energy surfaces of molecules and molecular clusters, for which exact

enumeration is impossible, use incomplete databases of minima, transition states and

their connecting rearrangements. When searching transition states starting from a given

minimum, these numerical techniques make explicit use of the fact that the potential

energy surface is a differentiable manifold and hence are not applicable to the discrete

setting considered here; see e.g. [1, 3, 41, 42].

In practice we usually cannot generate the complete landscape of the RNA molecule.

The program RNAsubopt [44], however, computes all structures below a certain threshold

value in O(n3 + nQ) time, where n is the sequence length and Q is the number

of secondary structures of interest. This is a controlled approximation in the sense

that we can compare the partition function of all explicitly generated structures

xi, Z ′ =
∑Q

i=1 exp(−E(xi)/RT ), with the exact partition function Z computed by

McCaskill’s algorithm: (Z − Z ′)/Z is the total equilibrium frequency of the omitted

high energy structures. In practice it is sufficient to use an energy band that extends

only a few kT above the highest energy structure of interest, such that (Z − Z ′) ≪ Z.

3. Kinetics

Very few experimental data are available at present to estimate transition rates between

different secondary structures. It is known that the rate of hairpin formation is governed

by the cancellation of the positive loop energy by the closing base-pair [31,32], and that

local hairpin formation is favored over long-distance structural elements, because of the

spatial proximity of the opposing base-pair partners [5, 26].

‖ The software is available from http://www.tbi.univie.ac.at/∼ivo/RNA/Barriers/.
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In [9] it has been shown that a good approximation to the few available quantitative

and qualitative data on RNA folding kinetics is obtained by modeling conformational

changes in terms of elementary steps of opening and closing of base pairs. In this

approach the transition rate rxy from secondary structure y to secondary structure x is

non-zero only if (y, x) ∈ M, i.e., if x and y are neighbors in the conformational energy

landscape. In other words, the folding dynamics of an RNA molecule is described as

motion on its conformational energy surface. Denote the probability that the molecule

has the secondary structure x at time t by px(t), the dynamics is governed by the master

equation

dpx

dt
=

∑

y∈X

rxypy(t) , with rxx = −
∑

y 6=x

ryx. (2)

In other words, the dynamics is described by a continuous-time Markov process with

infinitesimal generator R = (ryx). We solve this linear system of differential equations

by explicitly computing ~p(t) = exp(tR)~p(0).

The only missing ingredient is a model for the rates rxy between neighboring RNA

secondary structures. The transition state model dictates an expression of the form

ryx = r0e
−

E
6=
yx−E(x)

RT for x 6= y (3)

where the transition state energies E 6=
yx must be symmetric to assure detailed balance,

E 6=
yx = E 6=

xy. In the simplest case one can use

E 6=
yx = max{E(x), E(y)} (4)

which amounts to the Metropolis rule of simulated annealing. More sophisticated models

for RNA are discussed in [17,36,38]. The parameter r0 could be used to gauge the time

axis from experimental data, here we simply use r0 = 1.

4. Macro-States and Transition Rates

A description of the energy landscape or the dynamics of an RNA molecule based on

all secondary structures is feasible only for very small sequences since the number of

structures |X| grows exponentially with sequence length [16, 43]. We therefore need to

coarse-grain the representation of the energy landscape.

The simplest and most straightforward approximation for the folding dynamics is

the Arrhenius law for transitions on the barrier tree. Within this model, transitions

occur only between local minima that are directly connected by a saddle point, and

the transition state energies are approximated by the saddle point energy E[α, β]. This

approximation completely neglects entropic terms that arise because there are many

possible paths connecting two local minima.

A much better approximation can be derived from the microscopic dynamics as

follows. Let Π = {α, β, . . .} be a partition of the state space X. The classes of such a

partition are macro-states. As a concrete example consider the partition of X defined
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by the gradient basins B(z) of the local energy minima. To each macrostate α we can

assign the partition function

Zα =
∑

x∈α

e−E(x)/RT (5)

and the corresponding free energy

G(α) = −RT ln Zα (6)

Let us now turn to the transitions between macrostates. Suppose we know the

transition rates ryx from x to y. Then

rβα =
∑

y∈β

∑

x∈α

ryxProb[x|α] for α 6= β (7)

where Prob[x|α] is the probability to occupy state x ∈ α given that we know that the

process is in macrostate α. The kinetics of the molecule in terms of its macro-states is

given by the master equation
dpα

dt
=

∑

β∈Π

rαβpβ(t) (8)

where pα(t) =
∑

x∈α px(t) and rαα = −
∑

β 6=α rαβ. Assuming (local) equilibrium we have

Prob[x|α] = e−E(x)/RT /Zα and hence

rβα =
1

Zα

∑

y∈β

∑

x∈α

ryxe
−E(x)/RT (9)

The point here is that we can compute rβα “on flight” while executing the barriers

program if two conditions are satisfied: (a) For each x we can efficiently determine to

which macro-state it belongs and (b) the double sum in Eq. (9) needs to be evaluated

only for neighboring conformations (x, y) ∈ M. Condition (b) is obviously satisfied in

the landscape model since ryx = 0 by definition unless x and y are neighbors.

Condition (a) is easily satisfied for each of the gradient basins: in each step of the

barriers algorithm all neighbors y of the newly added structures x that have a smaller

energy have already been processed. Hence, if their assignment to a gradient basin is

known, the assignment for x equals the one for its lowest energy neighbor. Initially, each

local optimum forms the nucleus of new gradient basin, hence the macro-state to which

x belongs can be determined in O(δ) operations, where δ is the maximum number of

neighbors of a secondary structure.

We can use the transition state model to define the free energies of the transition

state G 6=
αβ by setting

rβα = r0e
−

G
6=
βα

−G(α)

RT (10)

A short computation then yields

G 6=
βα = −RT ln

∑

y∈β

∑

x∈α

e−
E
6=
xy

RT (11)

as one would expect. This allows us to redraw the barrier tree (which was given in terms

of the energies of meta-stable states and their connecting saddle points) in terms of free

energies of the corresponding macro-states and their transition states.
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Figure 1. Folding dynamics of xbix (CUGCGGCUUUGGCUCUAGCC). The process was

started in the open chain state and run until convergence to the thermodynamic

equilibrium distribution. (a) barrier tree, (b) Arrhenius approximation, (c) macro-

state process, (d) full process

5. Computational Examples

To demonstrate the quality of the coarse graining above, we present here the folding

dynamics for two examples: a short artificial sequence, as well as the well known yeast

tRNAphe sequence.

The short sequence, called xbix, has a length of 20 nt and the complete conformation

space consists of 3886 secondary structures. For this short sequence it is possible to

directly integrate the master equation (2) of the microscopic process and to compare it

with the coarse grained dynamics on the space of 34 macro-states corresponding to the
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Figure 2. Refolding of a tRNA molecule. The transition from meta-stable state 80

to 56 was chosen because it shows a pronounced plateau indicating two very different

pathways: some trajectories cross the highest saddle point and enter the subtree on the

right while others refold directly from 80 to 56. (a) barrier tree showing the 100 lowest

energy local minima, the subtree containing local minima 56 and 80 is highlighted in red

(b) cumulative distribution of first passage times (average of 9000 kinfold simulation)

(c) occupancies of macro-states computed with an absorbing state attached to basin

56.

local minima of the energy surface. Figure 1 shows that there is excellent agreement

between the macro-state approximation (c) and the full process (d). The Arrhenius law

gives a qualitatively correct description of the process, although quantitative details are

significantly different.

The tRNA sequence, with a length of 76 nt, has some 2.8 · 1017 possible secondary

structures. To recover all saddle points between low-lying local minima we considered

the approximately 25 million structures within 15kcal/mol of the ground state, and used

barriers to compute the 1000 lowest energy local minima as well as the rates between

the corresponding macro-states. Only minima with a depth of at least 1kcal/mol were

considered in the process.

Obviously, solving the master equation of the full process including the dynamics

of all allowed secondary structures is out of the question for such a large conformation

space. Instead we compared our coarse grained dynamics to a stochastic sample of

trajectories generated by kinfold. The program simulates the Markov chain (2) by a

rejection-less Monte Carlo algorithm [12]. Further details on the kinfold algorithm can

be found in [9].

Computing the occupancy of each macro-state from kinfold trajectories is very

expensive in terms of computer resources, in particular because the time to equilibration

becomes too long. Instead we have used kinfold to compute first passage times

by defining a stop structure in addition to the start point of each trajectory. For

the macro-state Markov process we introduce an additional absorbing state Ω, that is

accessible only from the macro-state ω that contains the stop structure u with a rate

rΩω = r0e
−Eu/RT /Zω.

The kinfold simulations for Fig. 2 required about 3 months of CPU time on an
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Intel Pentium 4 running at 2.4 GHz under Linux. In the coarse-grained model, the

computational bottleneck concerning CPU and memory resources is the diagonalization

of the transition matrix R, necessary for the computation of exp(tR). For 1000 states

diagonalization takes on the order of 1 minute.

As shown in Fig. 2 simulation and macro-state approximation are in reasonable

agreement. The time scale of the macro-state process is shifted somewhat to shorter

times and the percentage of trajectories that fold directly is overestimated. This

is probably a consequence of the truncation of the energy landscape which leads to

incomplete sampling of high energy structures that are more likely to lead outside the

56-80 subtree. For transitions with lower energy barriers the agreement is generally

better.

6. Concluding Remarks

We have shown here that a discrete model of secondary structure folding is capable of

describing the folding dynamics at macroscopic time-scales that are beyond the reach of

methods that operate at atomic resolution. For toy examples one can simply integrate

the master equation of the folding dynamics, as has been done also in [46], albeit not

using the standard RNA energy model. A controlled approximation to macro-states,

defined here as the gradient basins of metastable states, makes the computation of

the dynamics feasible for sequences of at least the size of tRNAs (76 nucleotides and

approximately 2500 atoms).

The macro-state approximation provides an efficient means of predicting whether

a given RNA sequence can act as an RNA switch, and if so, at which time scales.

Often RNA switches are triggered by binding of other molecules. In many cases

the interaction partner is another RNA. The folding landscape of a pair of interacting

RNAs could be computed explicitly using a modified version of the RNAsubopt program,

so that at least the case of RNA triggered RNA switches can be modeled entirely within

the macro-state approximation. In other cases the energetics of the interaction with the

trigger has to be described separately.

Since the barriers program used to compute the transition rate matrix R can deal

with arbitrary discrete landscapes, the approach is readily applicable to other problems

such as lattice protein folding.
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