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Abstract

Tensors are of great interest to many applications in ereging and in medical
imaging, but a proper analysis and visualization remairdlehging. It already has
been shown that, by employing the metaphor of a fabric siractensor data can
be visualized precisely on surfaces where the two eigectibires in the plane are
illustrated as thread-like structures. This leads to ainaotis visualization of most
salient features of the tensor data set.

We introduce a novel approach to compute such a visualizétoon tensor eld
data that is motivated by image-space line integral coriaiyLIC). Although our
approach can be applied to arbitrary, non-sel ntersecsimdaces, the main focus
lies on special surfaces following important featureshsag surfaces aligned to the
neural pathways in the human brain. By adding a postpraugss$ep, we are able
to enhance the visual quality of the of the results, whichrimeps perception of the
major patterns.

1 Motivation and Related Work

Since the introduction of tensor lines and hyperstreamlifig], there have been
many research efforts directed at the continuous repratsentof tensor elds, in-
cluding research on tensor eld topology [11, 23, 22]. Zhamgl Pang introduced
HyperLIC [30], which makes it possible to display a singlgezidirection of a tensor
eld in a continuous manner by smoothing a noise texturegiategral lines, while
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neglecting secondary directions. Recent approachestalidze Lagrangian struc-
tures on tensor elds [12] provide information on one chosamsor direction and
are especially useful for diffusion tensor data, where tlénnensor direction can
be correlated to neural bers or muscular structures, wlethe secondary direc-
tion only plays a minor role. More recently, Dick et al. [7]kdished an interactive
approach to visualize a volumetric tensor eld for implafaqming.

Hotz et al. [13] introduced Physically Based Methods (PBMI) tensor eld
visualization in 2004 as a means to visualize stress anith $éiasors arising in ge-
omechanics. A positive-de nite metric that has the samelgical structure as
the tensor eld is de ned and visualized using a texturedzhapproach resembling
LIC [4]. Besides other information, eigenvalues of the rieatan be encoded by free
parameters of the texture de nition, such as the remainaigrespace. Whereas the
method's implementation for parameterizable surfacetsatetopologically equiv-
alent to discs or spheres is straightforward, implememtatfor arbitrary surfaces
remains computationally challenging. In 2009, Hotz et &fl][enhanced their ap-
proach to isosurfaces in three-dimensional tensor eldthr&e-dimensional noise
texture is computed in the data set and a convolution is padd along integral
lines tangential to the eigenvector eld. LIC has been ugedeictor eld visualiza-
tion methods to imitat&chlierenpatterns on surfaces that are generated in experi-
ments where a thin Im of oil is applied to surfaces, which shmpatterns caused by
the air ow. In vector eld visualization, image-space LIG a method to compute
Schlierenlike textures in image space [27, 28, 17, 9], intended foydaand non-
parameterized geometries. Besides the non-trivial apidic of image-space LIC
to tensor data, image-space LIC has certain other drawbitaisly because the
noise pattern is de ned in image space, it does not followttezement of the sur-
face and, therefore, during user interaction, the thregedsional impression is lost.
A simple method proposed to circumvent this problem is atimgahe texture pat-
tern by applying randomized trigonometric functions to iimgut noise. Weiskopf
and Ertl [26] solved this problem for vector eld visualizah by generating a three-
dimensional texture that is scaled appropriately in phajsipace.

We developed and implemented an algorithm similar to thgiwed PBM but
for arbitrary non-intersecting surfaces in image space.aorithm can perform at
interactive frame rates for large data sets on current dpdRCs. We overcome the
drawbacks present in image-space LIC implementations byrdga xed param-
eterization on the surface. Thus, we do not require a thirsertsional noise texture
representation de ned at sub-voxel resolution for the datta Our approach is ca-
pable of maintaining local coherence of the texture patbatween frames when
(1) transforming, rotating, or scaling the visualizati¢®) changing the surface by,
e.g., changing isovalues or sweeping the surface througgespnd (3) changing the
level of detail. In addition, we implemented special apgtien-dependent modes to
ensure our method integrates well with existing technigBesides this, we also
apply several postprocessing steps to further increaseéghal quality and clarity
of the shown structures.
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Fig. 1 Flowchartindicating the four major steps of the algoritipmojection, which transforms the
data set in an image-space representation and producesttakrioise texture on the geometry;
silhouette detection required for the advection step and the nal renderiagyection, which
produces the two eigenvector textureesmpositing which combines intermediate textures; and
thepostprocessingwhich adds additional shading and improves the perceguallity of the nal
visualization. Between consecutive steps, the data isfeaed using textures.

2 Method

We employ a multi-pass rendering technique that consistswfmajor rendering
passes as outlined in Figure 1. After generating the bagpiat itextures once, the
rst pass projects all required data into image space. Rasgerforms a silhou-
ette detection that is used to guarantee integrity of theetitvn step computed by
multiple iterations of pass three. Eventually, pass foungoses the intermediate
textures in a nal rendering.

2.1 Projection into Image Space

First, we project the data into image space by renderingttface using the default
OpenGL rendering pipeline. Notably, the surface does nedme be represented by
a surface mesh. Any other representation that providegpdgpth and surface nor-
mal information works just as well (e.g., ray-casting methéor implicit surfaces,
cf. Knoll et al. [16]). In the same rendering step, the tenslatis transformed from
world space to object space, i.e., each tefisdhat is interpolated at the point on
the surface from the surrounding two- or three-dimensiterador eld is projected
onto the surface by

To=p T PT; (1)
with a matrixP de ned using the surface normalas
5 1
1 ng nynge ngng
P=@ nny1l nZ nnA: (2)

nn; nyn, 1 n2
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The camera viewing system con guration and the availableestresolution im-
ply a super- or sub-sampling of the data. We obtain an intatpd surface tensor
in every pixel which is decomposed into the eigenvectoeieiglue representation
using a method derived from the one presented by Hasan @i0dl.These eigen-
vectors, which are still de ned in object space, are prgddhto image space using
the same projection matricé4, andMp used for projecting the geometry to image
space, usually the standartbdelvienandprojectionmatrices OpenGL offers:

Vi =Mp My v, with (i 2 1;2): (3)

Even in the special case of symmetric second-order tensors’j which, in
general, have three real-valued eigenvalues and threegamial eigenvectors in
the non-degenerate case, the projected eigenvectors armarthogonal in two-
dimensional space. To simplify further data handling, welesthe eigenvectors as
follows:

kvky = maxj vij;jwig 4)

0= i withi2f 1;2g; and kWky 6 0 (5)

| i kv(’)l k¥ ’ ’ | i ¥
The special caslev?i ky = 0 only appears when the surface normal is perpendicular
to the view direction and, therefore, can be ignored. Theimasa norm (y-norm)
ensures that one component is 1 at and, therefore, one avoids numerical insta-
bilities arising when limited storage precision is avaidgbtand can use memory-
ef cient eight-bit textures.

2.2 Initial Noise Texture Generation

In contrast to standard LIC approaches, to achieve a prapealrepresentation of
the data, high-frequency noise textures, such as whitenaie not suitable for the
compositing of multiple textures. Therefore, we compute ithitial noise texture

using the reaction diffusion scheme rst introduced by Tigr{24] to simulate the

mixture of two reacting chemicals, which leads to largerdmboth “spots” that are
randomly and almost uniquely distributed (cf. Figure 2ht)gFor the discrete case,
the governing equations are:

Da;;j = F(i;j)+ Da (&+1j+ & 1j+ &;j+1+ a:j 1 4 aj);
Db;;j = G(i; j)+ Dp (bi+1j+ bi 1j+ bi;j+1+bi;j 1 4 b;j);where (6)
F(i;j)= (16 a&;j bi;j) andG(i;j) = s(a;j bi;j bij bij):

Here, we assume continuous boundary conditions to obtagamless texture in
both directions. The scalarallows one to control the size of the spots where a
smaller value of leads to larger spots. The constabtsandDy, are the diffusion
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constants of each chemical. We iBg= 0:125 andDy, = 0:031 to create the input
textures.

2.3 Noise Texture Transformation

Mapping the initial texture to the geometry is a dif cult aag@plication-dependent
task. Even though there exist methods to parameterizeacgthey employ restric-
tions to the surface (such as being isomorphic to discs arsgh require additional
storage for texture atlases (cf. [19, 15]) and, in geneegluire additional and often
time-consuming pre-processing.

Another solution, proposed by Turk et al. [25], calculates teaction diffusion
texture directly on the surface. A major disadvantage o théthod is the compu-
tational complexity. Even though these approaches proafiad®st distortion-free
texture representations, isosurfaces, for example, magistoof a large amount of
unstructured primitives, which increases the pre-pranggsne tremendously.

Whereas previously published approaches for image spaceeither use pa-
rameterized surfaces to apply the initial noise patterhésstirface or use locally or
globally de ned three-dimensional textures [26], we de ae implicit parameter-
ization of the surface that provides an appropriate mappfrtbe noise texture to
the surface.

Fig. 2 lllustration of the reaction diffusion texture used (rigahd the noise texture mapped to
geometry (left).

We start by implicitly splitting world space in voxels of egjwsize, lling the
geometry's bounding box, i.e., we de ne a regular grid. Eackeli is described by
its base coordinatle and a constant edge lendthirhe seamless reaction diffusion
texture is mapped to the surface of each of these voxels.Sigraa texture coor-
dinate to each vertex, the object space coordinate is tramsfl to the voxel space
that is described by a minimum and maximum coordinate whos@ecting line
is the bounding box' diagonal. Pointg on the geometry are transformedvgyel
using
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Fig. 3 Comparison of two different values bto demonstrate the possibility for dynamic re ne-
ment of the input noise to achieve different levels of detail

1
000 1

and transformed into the local coordinate system by

0
Woxel = Vg

Vhit = Woxel D WoxelC: (8)

The two texture coordinates are chosen to be those two coempoafvy,i: that form
the plane that is closest to the tangential plane of the saiifathis point.

t = (Vhiy ; Vi, ), With i & j 6 k™ (ng = maxt ni;nj;ngg): )

In other words, this method transforms the world coordirsgtgtem to a system
de ned by one voxel, ensuring that every component of eveintos;; is in [0; 1].
The texture coordinate is determined by the surface's nbama, in particular, by
the voxel side-plane whose normal is most similar to thees's normal (in terms
of angle between them). The use of the term “voxel” is forsitation purposes
only; those voxels are never created explicitly.

Regardless of its simplicity, this method supports a carttirs parameterization
of the surface space that only introduces irrelevant distes for mapping the noise
texture (cf. Figure 2). The mapping is continuous but@bicontinuous, which is
not required for mapping the noise texture as discontiesiith the rst derivatives
automatically vanish in the advection step.

Another positive aspect of this mapping is the possibilityaahange of scale
that is not available in the approaches of, e.g., Turk et24].[By changing the
size of voxels during the calculation, different frequesodf patterns can easily be
produced and projected onto the geometry. This capabilawa one to change the
resolution of the texture as required for automatic textaneement when zooming.
A comparison of two different levels of detail is shown in &ig 3.
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2.4 Silhouette Detection

To avoid advection over geometric boundaries, a silhowdéttiee object is required
to stop advection in these areas [17]. Otherwise, tensogditn would lead to a
constant ow of “particles” across surface boundaries whigakes the surface's
geometry and topology unrecognizable.

A standard three-by-three Laplacian lIter, de ned by theneolution mask

2 3
010

41 415 (10)
010

applied to the depth values followed by thresholding, hasgm to be suitable for
our purposes. The silhouette imagg for each pixe(x;y) is stored in the red color
channel of its output texture.

2.5 Advection

We have discussed how to project the geometry and the comdspg tensor eld
to image space. With the prepared image space eigenventbtis&input noise tex-
ture, mapped to geometry, advection can be done. We use kediuler integration
applied to both vector elds. With Euler's method a particken be followed along
a stream. In our case, we do not calculate streamlines apesdion of both vector
elds, as normally done in LIC. We directly advect the noisput texture with the
given vector elds, which has the same result as locallyrilbg the data along pre-
computed streamlines. This decision was based on the factrthssively parallel
architectures like modern GPUs are able to perform this irmglarallel for each
pixel several hundred times per second. Formally, the dibrestep can be sum-
marized as follows: First, we assume an input &do be a continuous function,
de ned over a two-dimensional domain:

fer(xy)! p withxy, p2 [0;1]; (11)

i.e., itis a function returning the input value of the eRiat a given position. Conti-
nuity is ensured with interpolating values in-between hfiis in mind, the iterative
advection on each poiifx;y) on the image plane can now be described by

8xy2[0;1]:81 2f11;129:

| _ .
Po = bx;y,
for (OGY) + W)+ f  (6Y) V?)_ (12)

phi=k by+(1 K >
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Fig. 4 Advection texture after ten iterations. Left: red chanm&ltainingpgl, the advection image

of eigenvector eld 1; right: green channel containip@, the advection image of eigenvector eld
2.

The iterative advection process has to be done for eachwsgen eld separately
with separate input and output elds as shown in Figure 4. The value at a given
point is a combination of the input noise and the iterativadivected input noise
from the prior steps. Since the eigenvecm?rjsdo not have an orientation, the ad-
vection has to be done in both directions. The iteration aaistbopped when the
value change exceeds a threshold.

2.6 Compositing

In a subsequent rendering pass, an initial fabric-likeuexis composed. For the
sake of simplicity and the limitations of some graphics lbpave split the com-
positing in an initial compositing of four textures follodey a postprocessing step
described in the next section, which mainly improves visugllity. Whereas pixels
that are not part of the original rendering of the geometeydiscarded using the
information from the depth buffer, the color values for alier pixelgx;y) in image
space aftek iterations is de ned as:

r fp’z(X;Y)
. _ k H .
R(xy) = m + ey + light(L xy);
Py
(L) f.06y) . (13)
G(xy) = W + ey + light(L xy);
Py

B(xy) = exy+ light(L xy);

wherep’kl and p'k2 are the elds generated from the eigenvector advectionesind
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Fig. 5 The composited image produced by the compositing shadbrligfiting. Left: the whole
geometry. Right: a zoomed part of the geometry to show ttiebstirry fabric structure on the
surface.

the silhouette image. The scalar faat@s used to blend between the two chosen ten-

sor directions. Equation 13 is a weighting function thatmes the in uence of the

termsfp,l(x; y) andfp,z(x; y), which in uence the green and red color channels, re-
k

spectively. By squarilr(lg the denominator, we emphasizeitfexehce in both elds.
This approach creates a mesh resembling the tensor eidiststre. To reduce the
effect of light sources on the color coding, we use a sepégitiing functionlight
that, while manipulating the intensity, does not affect flzse color of the mesh
structure. Even though Blinn-Phong shading [2] providesrgguired depth cues,
additional emphasis of the third dimension using depthaening color coding has
proven to provide a better overall understanding of the fta

2.7 Postprocessing

Additional lters can be applied to the composed image, sasltontrast enhance-
ment or sharpening Iters, which are commonly used in veottd LIC [26, 9].
Figure 5 shows the result of Equation 13 combined with BRimeng shading after
applying a sharpening lter.

Bump mapping, rstintroduced by Blinn [3] to simulate thrd@mensionality in
planar surfaces, can be used to improve spatial percepiitwe dabric surface. As
bump mapping is normally computed in world space, wherehhgetdimensional
tangent space is known, the textured surface would be mdjuir world space,
whereas our texture is parameterized for use in image speargsforming the mod-
i ed normal, which is required for bump mapping and, in fadpends on the gradi-
ent information on the surface, from image-space back tédagpace is not a trivial
task, especially when using a perspective projection. 8fhee, we use a modi ed
approach that can be applied in image space only.
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Bump mapping requires the surface normal at each gajy) of the surface,
which can be obtained using the gradient information on géwx#l of the surface
in image space: 3

a(xy) = iN(R+ G)(X.y)ii: (14)
The resulting two-dimensional vectg(x;y) describes the gradient on the image
plane using each pixel's intensity. The blue color chanseldt used as it does not
contain relevant information besides lighting and edgsds.dlso worth noting that
we exclude the light xy and edge informatiomy, from gradient calculation, as
we do lighting using bump mapping. Using this gradient, tee surface normal is
a weighted sum of the surface normal and the gradient, anskid for calculating
Phong lightingB xy as seen in Figure 6.

Fig.6 The nalimage produced by the postprocessing shader in awatibn with bump mapping,
the geometry's Phong shading and combined edges. Lefdatdiump mapping. Right: the same
zoomed part of the original geometry to show the effect ofveng the resulting Phong intensities
by the originalR(x;y) andG(x;y) intensities. This approach creates a more fabric-like @sgion
that can be misunderstood as rotating ribbons similar eastrribbons.

Figure 6 (right) shows the additional scaling of the red arekg color channels
by the original color intensities, to lead to a more fabikeimpression of the lines.
Equation 15 shows this in more detail:

Ro(X%Y) = Bxy(RXY)G(xY)+ RE(XY)) + 6cy+ light(L xy);

) . (15)
Gp(XY) = B xy(RXY)G(xy)+ G (XY)) + ey light(L xy):

With the help of bump mapping, we achieve a better spatiat@sgion of the
fabric-like pattern. Besides this, postprocessing lteas help to avoid blurry struc-
tures.

A further visual improvement can be achieved by interpgetime structure on
the surface as streamtubes [29] along the surface. Therafoapproach similar to
the ones in [18, 20] is appropriate to create the visual efieéstreamtubes on the
geometry's surface, without actually creating tubes.tFinee need to have some
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kind of tangential coordinate system, similar to the onedeeefor bump mapping.
Since our bump mapping is done in image space, the normakdfrthge plane is
(0;0;1)7. The eigenvectorvzs‘,)1 andvfJ in Equation 3 from the tensor eld in image
space can be used as the tangent for each eld. These tardgardte the direction
of the tube along the surface and, together with the norneahedthe binormal
vector, which is nearly equal to the gradient vector. In ficag it normally is not
exactly the same. The binormafor each eigenvector eldis de ned as:

bi=(0,0,1)" V), withi2f0;1g: (16)

These binormals can be calculated for each point on thecuifa nally determine

the point's actual position on the tube, described by themigctory?i, one has to
nd the border of the fabric structure that has been createithé compositing step.
Mathematically, this can be expressed in this way:

B=fgR(sh) < e"*s2 g” (apan) 2 P (B), with
ap=minfgs2 B*s 0g a7)
a,=max gs2 B" s< 0g:

In other words, we nd the smallest scaling factarsandap which scale the binor-
mal vectordh; andb, in both directions, so that they point on a area below a given
thresholde in the composited image from the prior step, therefore frojgnto the
border of the tube. As the mapping functidRandG, from Equation 13, only need
two-dimensional positionsandy, the binormal'sc andy-components are used and
thez-component is ignored, as it is always zero. The same faajoasda, for the
second eigenvector eld are calculated using the greerr cblannel of the compos-
ited image, which are used in the same way as described belmntler the tubes
for the second eigenvector eld. The width of the tube at agipoint is de ned by
ap+ an. The width of the tube is set in relation with the facégrto nd the actual
position of the current poir(;y) on the tube by using:

ap
ap+ an

p= 2 [0;1]; (18)

which nally is squared to describe the round surface of a&tub

(1 2p% ifp O .. . 1.
(1 2p)? ifp<0 withratio2 [ 1;1]: (29)
The value of describes the ratio between the normal completely on theeglaith
a zero z-component) and the normal completely pointing tdg/the camera (with
a z-component of one):
n=(1 r)(0;0;1)"+ rbg (20)

The normaln is used to calculate the Phong shading on the surface andigesd
the tube-like effect with proper spatial impression on théace, as can be seen in
Figure 7.
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The artifacts seen in Figure 7 result from the local approaehare using to
calculate the tubes. As we do not integrate along the eigtoreeld, there may be
discontinuities along a tube in the produced image. Theralap artifacts caused by
a blurry input eld, where borders cannot be found clearlyt Bince the frequency
of the fabric structure is normally much higher, these ¢face not visible anymore,
as can be seen in Figure 7, left.

Fig. 7 Left: Interpreting the nal image from Figure 5 as strean#stalong the geometry's sur-
face, and lighting them accordingly, results in a less Blsurface. Right: zoomed part of the left
geometry to show the tube effect. Although there are plehgrtifacts in the zoomed image, they
do not in uence the overall impression of images not zoomedhach. Especially, such strongly
zoomed images are not useful for gathering an overview detensor eld's structure.

2.8 Implementation

Our implementation is not limited to a special kind of georydt is able to handle

almost every tensor eld de ned on a surface. Itis, for exdepossible to calculate
an isosurface on a derived scalar metric, like fraction&aropy, or on a second
data set to generate a surface in a three-dimensional dataicloOther methods
include hyper-stream surfaces [6], wrapped streamlingsof8domain-dependent
methods like dissection-like surfaces presented in [1& dhly requirement for the

surface is that it is non-sel ntersecting and that smoottmads are provided as they
are required for the projection step and for proper lightiFige noise texture can be
pre-calculated in a pre-processing step or stored in a li¢ i@sndependent of the

data.

The rst step projects the geometry into image space, sirhpisendering the ge-
ometry and pre-calculating the Phong light intensityy 2 [0; 1] at every rendered
fragment with the coordinatesandy. In the same step the tensors are projected as
well. When the tensors are symmetric, it is suf cient to s#ar six oating-point
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values per vertex to the GPU. In our case, two three-dimeasi@xture coordi-
nates are used per vertex to upload the tensor informatimyatbith the geometry.
Assuming the tensorF is available on the GPU, it is possible to map the two main
directions to the surface described by the normati the current vertex using Equa-
tion 1. This projection is implemented in a per-vertex manméhe vertex shader. In

contrast, to ensure proper interpolation, eigenvalue m@osition and eigenvector
calculation together with image space projection need tddree in the fragment

shader. Since the eigenvectors are without orientatios, fipssible to have sign

ips between adjacent vertices. If the interpolation tagésce after the eigenvector
decomposition, these sign changes can render the intéigpoleseless. The projec-
tion step also includes mapping the noise texture to the gggnCalculating each

vertex' position in one voxel, using the equations from #e#c®.3, can be done

along the tensor projection. The GPU interpolates thosgegalor each fragment,

where it can be used to determine the noise texture elemeseto

Since texture space is limited on our hardware, an NVIDIA @eE 8300 GTS,
to four bound textures per rendering pass and active fraffeglmbject, it is impor-
tant to store as much information as possible in each texilost data are calcu-
lated during the projection step and need to be stored inpat,four textures. Since
I'1 I, itis not necessary to transfer both values. Normalizimgubctor(/ 1; 1 2)
using the maximum norm as de ned in Equations 4 and 5, it sef to transfer the
smaller/ , becausé ; always is one. Also, the elgenvectafé andv0 need to be
scaled since textures are used for transportation whete \&doe must be in the
interval[0; 1].

All intermediate calculations are done on the GPU using tpen@L shading
language (GLSL) in an offscreednamebuffer objec{FBO). Thus, we avoid the
need for rendering the geometry multiple times or even ddioge calculations on
the CPU, which leads to a large speed gain.

The next step applies an edge detection Iter to the depth, inagur case a dis-
crete Laplacian Iter kernel, which we have implemented ba GPU using GLSL
shaders as a separate offscreen rendering pass. We meegal $eput data into
one texture to decrease the total number of textures. claofithe edge detection
shader output texture.

We store the result of the edge detection lter, namely thptidéuffer value
used to calculate the edges, the unprocessed input noideaet! the noise, which
has been mapped to the geometry's surface, in the green,didealpha channel,
respectively. By combining multiple data values into a &nigxture, we reduce
the number of texture look-up operations required in theseontive steps. The
used input textures are the values calculated during thegiron step, the input
noise texture and the depth buffer. The advection step¢ttiiréollowing the edge
detection, can “grab” its data directly from a single tegtuburing advection, it is
not advisable to have all values in one texture, since jeshtiise mapped onto the
geometryby, 1, and the depth buffer are used. We also transfer the unpextegsut
noise in this texture, since our implementation is able ggte which noise eld is
used during advection because near-planar geometry dbesquire any complex
geometry mapping.
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The advection step advects the previously mapped noisgréensing the eigen-
vector color map from the projection step.

Figure 4 shows the red and green channels of this outputreezfiter several
iterations. Note that, due to data merging in the prior stegre need to be just three
input texture bindings per iteration, instead of four, fepth buffer, edge detection
texture, the eigenvector color map and the last iterationtput texture. Together,
both algorithms perform the advection iteration describegection 2.5. After some
iterations, the geometry-mapped noise gets advected mdmnare and is ready to
be processed for output.

The nal output processing includes blending both advediggnvector elds
with light information and the geometry edges as well aspitig fragments us-
ing the depth buffer and possibly an additional postprangsstep. The last output
texture created during advection iteration is used togetlith the color map con-
taining lighting information, and the edge detection otitigxture for clipping and
edge blending to create the nal visualization.

As mentioned in Section 2.6 several modi cations are pdssiBince the infor-
mation available in this step also contains the fractionaaropy, » and implicitly
I 1, it is possible to blend-in those values to emphasize adititensor eld fea-
tures. In Figure 5 both eigenvector elds are blended with shhouettes and with
Phong luminance, calculated earlier in the projection.dtggures 6 and 7 show the
post processing possible in a further rendering pass usinthar postprocessing
shader.

3 Results

We have introduced a method to create a fabric-like surfassar LIC in image
space, similar to the one introduced in [13]. We used ideas fi17] to transform
the algorithm into image space. Our implementation, udig method, is able to
reach frame rates high enough for real-time user intenactibe only bottleneck is
the hardware's ability to render large and triangle-ricometry. All further steps
can be done in constant time, see Table 1.

3.1 Arti cial Test Data Sets

We rst applied our method to arti cial test data sets that@@omplex topology: a
torus, the Bretzel5, and the Tangle data set (cf. [16]), dd as implicit surfaces:

P P
(1 X2+ y2)(1 X2+ y2)+ 7 0:125= 0; (21)

(P+:25 y* 1) (:25 X°+y?> 1)?+Z 0:1=0,and (22)
X* 5 X+y* 5 y’+7 5 Z+118+w=0: (23)
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Fig. 8 Analytic test data sets. We applied our method to isosusface the scalar eld's Lapla-
cian to demonstrate the suitability for complicated sweaShown are the nal images using our
method for a sphere, torus, Tangle, and Bretzel5 data saa{lBgs 21-23).

We used the Laplacian on the surfaces as tensor elds. Thetsedisplayed in
Figure 8 show that neither the topology nor our arti cial gareterization of the
input noise texture in uences the quality of the nal renohey.

3.2 Modi cation for Medical Data Processing

Even though many higher-order methods have been proposedodcanner, time,
and cost limitations, second-order tensor data is still idamt in clinical applica-

tion. Medical second-order diffusion tensor data setsdififom engineering data
sets because they indicate one major direction whereasttmdary and ternary
directions only provide information in areas where the mdjecection is not well-

de ned, i.e., the fractional anisotropy—a measure for #resbr shape—is low. Al-
most spherical tensors, which indicate isotropic diffasimccur in areas where mul-
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Fig. 9 An axial slice through a human brain: Corpus callosum (C&j)rpyramidal tract (blue),
and parts of the cinguli (green in front and behind the CC)aible. The main direction in three-
dimensional space is indicated by the RGB color map, whedeingicates lateral (left—right),
green anterior—posterior, and blue superior—inferioeation. The left—right structure of the CC
can clearly be seen in its center, whereas color and patidicaite uncertainty towards the outer
parts. The same is true for the cinguli's anterior—postesinucture. As seen from the blue color, the
pyramidal tract is almost perpendicular to the chosen piamtk therefore, secondary and ternary
eigenvectors dominate the visualization. Alternativelg,could easily fade out those out-of-plane
structures in cases where they distract the user.

tiple ber bundles traverse a single voxel of the measurerewhen no directional
structures are present. Therefore, we modulate the cotbingaising additional in-
formation: In areas where one ber direction dominates, wiy display this major
direction using the standard color coding for medical dats,swvhere X, y, and z
alignment are displayed in red, green, and blue, respégtiveareas where a sec-
ondary direction in the plane exists, we display this infation as well but omit the
secondary color coding and display the secondary direatignay-scale rendering
mode and always below the primary direction (cf. Figure 1. use the method
of Anwander et al. [1] to extract surfaces that are, whereipées tangential to the
ber directions. Hence, we can guarantee that the projaaioor introduced by our
method in the surface's domain remains small. Even in ardesemthe fractional
anisotropy is low and the color coding does no longer prodidectional informa-
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Fig. 10 Diffusion tensor data set of a human brain. We employed thihodeby Anwander et
al. [1] to extract a surface following neural bers and apgliour method with an alternative color
coding that is more suitable and can be incorporated moily @t® medical visualization tools.

tion, such as in some parts of the pyramidal tract in Figureti® texture pattern
still provides this information.

3.3 Mechanical Datasets

Our approach is not only applicable to medical datasetst bah also be applied to
many other tensor data sets. Figures 11 and 12 show a slicesiarthquake dataset
and an analytical strain tensor eld. The analytical datasthe well-known single
point load data set, where a single in nitesimally smallpgaource pushes on an
in nite surface. The forces and distortions inside the abgre represented by stress
and strain tensors, which are symmetric, second-ordeotenshe earthquake data
set is a simulation of a single concrete pile in solid grouxdited by a measured
earthquake pattern from the Kyoto earthquake (cf. Figule A2 shown, the data,
material stress tensors, are de ned on an irregular grideWeacted a plane per-
pendicular to the pile and show the tensor information irt fflane. Due to the
time-dependent nature of the simulation, static imagesaire complex.
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Fig. 11 A slice in the well-known single point load data set, showiing symmetric strain tensor
at the surface of the slice.

Fig. 12 A concrete pile in solid ground. Left: the original grid show purple. Right: a slice of
the dataset showing the symmetric part of the tensor eld.

3.4 Performance

As indicated before, the only “bottleneck” in the visuatipa pipeline that is
strongly geometry-dependent is the projection step. Siheesurface needs to be
rendered repeatedly in case of user interaction, the padioce measures of our
method consider repeated rendering of the geometry. Theefrate with geometry
not being moved and, therefore, making the projection stejitlae edge detection
step unnecessary, is considerably higher. Our implementatquires only few ad-
vection iterations per frame, which ensures high framesratel smooth interaction.
To make the frame rates in the following tables comparatser interaction is as-
sumed and, therefore, rendering a single frame always sisrui

one projection step, including geometry rendering;
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one edge detection pass;
three advection iterations; and
one output processing pass.

As seen in the previous sections, fragments not belongitigegtgeometry are dis-
carded as soon as possible without using deferred shadiigjalto leads to perfor-
mance gain in advection and output processing. In Table éleztion of data sets
with their corresponding number of triangles and tensaedisted. The frame rates
shown were obtained on an AMD Athlon(tm) 64 X2 Dual Core Pssce 3800+
(512K L2 Cache) with a NVIDIA G80 GPU (GeForce 8800 GTS) an@MB of
graphics memory at a resolution of 102468 pixels.

Figure]Nb Triangle$Nb Tensor$fps|fps (Phong only)? Geometry Share

10 41472 63075 |32 61 2%
5 58624 88803 (30 60 69%
9 571776 861981 |14 16 90%

Table 1 Frames per second (fps) for different data sets with giventrar of triangles and num-
bers of tensors. The frame rates are compared to simpleriegdsf the geometry using Phong
shading. The frame rates were obtained for an AMD Athlon@#hX2 Dual Core Processor 3800+
(512K L2 Cache) with an NVIDIA G80 GPU (GeForce 8800 GTS) adMB of graphics mem-
ory at a resolution of 1024 768 pixels. The geometry share relates the time used by thé¢ GP
to rasterize the geometry to the overall rendering time ctvltiontains all steps of the pipeline.
The time used to render the geometry clearly dominates tigeriang times and reaches up to 90
percent of the overall rendering time even for medium-sgeometries.

The assumption that geometry rendering with projectiorhés weakest com-
ponent in this pipeline and that edge detection, advectod, output processing
perform at a data-independent frame rate is con rmed by thmé rates shown in
Table 1. It con rms that for large geometries, rendering ¢ig®metry alone is the
dominant component. Since the vertex-wise calculatiomsdyprojection are lim-
ited to tensor projection (Equation 1) and vertex project{gquation 7), the most
expensive calculations during projection are executedrpgment. This means that
the expensive eigenvalue decomposition and eigenvedimulations are only re-
quired for fragments (pixels). To further decouple the gkltion effort from the
geometry's size, the depth test should be performed befferming the eigende-
composition. This goal can be achieved by rst renderingghgected tensors to a
texture, and computing the decomposition for visible fragis only. Nevertheless,
this is not necessary for our current data set and screeswstzere the time required
to render the geometry itself clearly dominates the timeiregl to compute the tex-
ture pattern in image space. This can be seen in the incgpeasimes in Table 1 with
increasing size of vertices rendered.



20 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamand,Gerik Scheuermann

4 Conclusions and Possible Directions for Future Research

We have presented a novel method for rendering fabric-likectires to visualize
tensor elds on almost arbitrary surfaces without geneathree-dimensional tex-
tures that span the whole data set at sub-voxel resolutioerefore, our method
can be applied to complex data sets without introducingutextnemory problems
common to methods relying on tree-dimensional noise testuks major parts of
the calculation are performed in image space, the perfocmahour algorithm is

almost independent of data set size, provided that surfasebe drawn ef ciently,

e.g., by using acceleration structures to draw only thoses pé the geometry that
intersect the view frustum or using ray tracing methods.

Whether the surface itself is the domain of the data, a serfEcned on the
tensor information (e.g., hyperstream surfaces), or asarfle ned by other unre-
lated quantities (e.g., given by material boundaries inreegying data or anatomical
structures in medical data) is independent from our apgrddevertheless, the sur-
face has to be chosen appropriately because only in-pléoveriation is visualized.
To overcome this limitation, information perpendiculatie plane could be incor-
porated in the color coding, but due to a proper selectioh@ptane that is aligned
with our features of interest, this has not been necessanuigpurposes.

Especially in medical visualization, higher-order tenséormation is becoming
increasingly important and different methods exist to al&ae these tensors, includ-
ing local color coding, glyphs, and integral lines. Nevet#ss, an extension of our
approach is one of our major aims. In brain imaging, expagteathat the maxi-
mum number of possible ber directions is limited. Typigalh maximum of three
or four directions in a single voxel are assumed (cf. Schetl&d. [21]). Whereas the
number of output textures can easily be adapted, the majmainéng problem is a
lack of suitable decomposition algorithms on the GPU. Imgg&ce techniques, by
their very nature, resample the data and, therefore, requie to use such proper in-
terpolation schemes. In addition, maintaining orientatiand assigning same bers
in higher-order data to the same texture globally is notibtestoday and, therefore,
is a potential topic for further investigation.
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